These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 4675447)

  • 1. Equilibria in the fibrinogen-fibrin conversion. IX. Effects of calcium ions on the reversible polymerization of fibrin monomer.
    Endres GF; Scheraga HA
    Arch Biochem Biophys; 1972 Nov; 153(1):266-78. PubMed ID: 4675447
    [No Abstract]   [Full Text] [Related]  

  • 2. Equilibria in the fibrinogen--fibrin conversion. 8. Polymerization of acceptor-modified fibrin monomer.
    Endres GF; Scheraga HA
    Biochemistry; 1968 Dec; 7(12):4219-26. PubMed ID: 5750166
    [No Abstract]   [Full Text] [Related]  

  • 3. Equilibria in the fibrinogen-fibrin conversion. VI. Ionization changes in the reversible polymerization of fibrin monomer.
    Endres GF; Ehrenpreis S; Scheraga HA
    Biochemistry; 1966 May; 5(5):1561-7. PubMed ID: 5961278
    [No Abstract]   [Full Text] [Related]  

  • 4. Equilibria in the fibrinogen-fibrin conversion. VII. On the mechanism of the reversible polymerization of fibrin monomer.
    Endres GF; Scheraga HA
    Biochemistry; 1966 May; 5(5):1568-77. PubMed ID: 5961279
    [No Abstract]   [Full Text] [Related]  

  • 5. [Investigation of the physicochemical properties of fibrinogen and fibrin-monomer of bull].
    Lugovskoï EV
    Ukr Biokhim Zh; 1967; 39(2):130-6. PubMed ID: 5603056
    [No Abstract]   [Full Text] [Related]  

  • 6. Rheology of fibrin clots. II. Linear viscoelastic behavior in shear creep.
    Gerth C; Roberts WW; Ferry JD
    Biophys Chem; 1974 Oct; 2(3):208-17. PubMed ID: 4474029
    [No Abstract]   [Full Text] [Related]  

  • 7. The influences of divalent metal ions on fibrin monomer polymerization.
    Suzuki K; Hashimoto S
    Biochim Biophys Acta; 1976 Aug; 439(2):310-5. PubMed ID: 821534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of fibrinogen on fibrin polymerization. Ultracentrifugation studies.
    Preissner KT; Rötker J; Selmayr E; Fasold H; Müller-Berghaus G
    Biochim Biophys Acta; 1985 Jul; 829(3):358-64. PubMed ID: 4005267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medium-dependent structure modifications of reconstituting fibrin.
    Belitser VA; Manjakov VP; Varetskaja TV
    Biochim Biophys Acta; 1971 Jun; 236(3):546-9. PubMed ID: 5559961
    [No Abstract]   [Full Text] [Related]  

  • 10. [Mechanism of inhibition of fibrin polymerization by fibrinogen and its active fragments].
    Belitser VA; Varetskaia TV; Kosterin SA
    Biokhimiia; 1980 Jan; 45(1):157-64. PubMed ID: 7213830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mechanism of self-assembly of soluble fibrin oligomers and the role of fibrinopeptides A and B in this process].
    Rozenfel'd MA; Gershkovich KB; Kuznetsov DV; Meshkov BB; Gontar' ID
    Mol Biol (Mosk); 1986; 20(4):1098-110. PubMed ID: 3762532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of fibrin polymerization by fragment d is affected by calcium, Gly-Pro-Arg and Gly-His-Arg.
    Furlan M; Rupp C; Beck EA
    Biochim Biophys Acta; 1983 Jan; 742(1):25-32. PubMed ID: 6824684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some symmetry considerations for the fibrinogen-fibrin assembly system.
    Doolittle RF
    J Supramol Struct; 1974; 2(2-4):138-49. PubMed ID: 4474572
    [No Abstract]   [Full Text] [Related]  

  • 14. Fibrin formation: the role of the fibrinogen-fibrin monomer complex.
    Brass EP; Forman WB; Edwards RV; Lindan O
    Thromb Haemost; 1976 Aug; 36(1):37-48. PubMed ID: 1036827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibrin formation: effect of calcium ions.
    Brass EP; Forman WB; Edwards RV; Lindan O
    Blood; 1978 Oct; 52(4):654-8. PubMed ID: 687825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of steric exclusion by dextran on the conversion of fibrinogen into fibrin.
    Rampling MW; Lane DA; Kakkar VV
    Biochem Soc Trans; 1976; 4(4):688-90. PubMed ID: 1001743
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterization of soluble polymerized fibrin formed in the presence of excess fibrinogen fragment D.
    Knoll D; Hantgan R; Williams J; McDonagh J; Hermans J
    Biochemistry; 1984 Jul; 23(16):3708-15. PubMed ID: 6236846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of a new monoclonal antibody against N-terminal heptapeptide of fibrin alpha-chain to fibrin polymerization site 'A': effects of fibrinogen and fibrinogen derivatives, and pretreatment of samples with NaSCN.
    Dempfle CE; Dollman M; Lill H; Puzzovio D; Dessauer A; Heene DL
    Blood Coagul Fibrinolysis; 1993 Feb; 4(1):79-86. PubMed ID: 8457657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gly-Pro-Arg-Pro modifies the glutamine residues in the alpha- and gamma-chains of fibrinogen: inhibition of transglutaminase cross-linking.
    Achyuthan KE; Dobson JV; Greenberg CS
    Biochim Biophys Acta; 1986 Aug; 872(3):261-8. PubMed ID: 2873839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, number of binding sites, and species differences.
    Laudano AP; Doolittle RF
    Biochemistry; 1980 Mar; 19(5):1013-9. PubMed ID: 7356959
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.