These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4676314)

  • 1. An electrogenic sodium pump as a possible factor leading to the concentration of amino acids by mouse ascites-tumour cells with reversed sodium ion concentration gradients.
    Gibb LE; Eddy AA
    Biochem J; 1972 Oct; 129(4):979-81. PubMed ID: 4676314
    [No Abstract]   [Full Text] [Related]  

  • 2. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate.
    Reid M; Gibb LE; Eddy AA
    Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid absorption by mouse ascites-tumour cells depleted of both endogenous amino acids and adenosine triphosphate.
    Morville M; Reid M; Eddy AA
    Biochem J; 1973 May; 134(1):11-26. PubMed ID: 4723218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion gradients and the accumulation of various amino acids by mouse ascites-tumour cells depleted of adenosine of adenosine triphosphate.
    Eddy AA; Hogg C; Reid M
    Biochem J; 1969 Mar; 112(1):11P-12P. PubMed ID: 5774489
    [No Abstract]   [Full Text] [Related]  

  • 5. Energization of amino acid transport, studied for the Ehrlich ascites tumor cell.
    Christensen HN; de Cespedes C; Handlogten ME; Ronquist G
    Biochim Biophys Acta; 1973 Dec; 300(4):487-522. PubMed ID: 4130564
    [No Abstract]   [Full Text] [Related]  

  • 6. Equilibrium and steady-state models of the coupling between the amino acid gradient and the sodium electrochemical gradient in mouse ascites- tumour cells.
    Philo RD; Eddy AA
    Biochem J; 1978 Sep; 174(3):811-7. PubMed ID: 728087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some novel aspects of the relationship between the amino acid gradient and the sodium electrochemical gradient in mouse ascites tumour cells.
    Eddy AA; Hopkins P; Johnson E
    Biophys Chem; 1988 Feb; 29(1-2):119-25. PubMed ID: 3358997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ouabain on amino acid uptake by mouse ascites-tumour cells in the presence of nigericin.
    Johnson E; Eddy AA
    Biochem J; 1985 Mar; 226(3):773-9. PubMed ID: 3985945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of K+ diffusion gradients to support transport by Escherichia coli membrane vesicles.
    Hirata H
    Methods Enzymol; 1979; 55():676-80. PubMed ID: 379504
    [No Abstract]   [Full Text] [Related]  

  • 10. Sugar and amino acid transport in animal cells.
    Hopfer U
    Horiz Biochem Biophys; 1976; 2():106-33. PubMed ID: 6372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the electrical excitability of neuroblastoma cells by valinomycin.
    Spector I; Palfrey C; Littauer UZ
    Nature; 1975 Mar; 254(5496):121-4. PubMed ID: 1167942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential.
    Hirata H; Altendorf K; Harold FM
    J Biol Chem; 1974 May; 249(9):2939-45. PubMed ID: 4133356
    [No Abstract]   [Full Text] [Related]  

  • 13. Energization of alanine transport in isolated rat hepatocytes. Electrogenic Na+-alanine co-transport leading to increased K+ permeability.
    Kristensen LO
    J Biol Chem; 1980 Jun; 255(11):5236-43. PubMed ID: 6154702
    [No Abstract]   [Full Text] [Related]  

  • 14. The accumulation of amino acids by mouse ascites-tumour cells. Dependence on but lack of equilibrium with the sodium-ion electrochemical gradient.
    Hacking C; Eddy AA
    Biochem J; 1981 Feb; 194(2):415-26. PubMed ID: 7305998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport processes in tumours.
    Quastel JH
    Can Med Assoc J; 1965 Dec; 93(23):1211-6. PubMed ID: 5842595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of protease I of Aspergillus oryzae (brinase) on membrane permeability and growth of Landschütz ascites tumour cells.
    Smyth H; Flahavan E; Thornes RD
    Int J Cancer; 1971 May; 7(3):476-82. PubMed ID: 5559592
    [No Abstract]   [Full Text] [Related]  

  • 17. Action of tumor-inhibitory gum tragacanth on potassium permeability of ascites tumor cells and partial characterization of the cytotoxic component.
    Roe EM; Smyth H; Flahavan E
    Cancer Res; 1972 Oct; 32(10):2067-74. PubMed ID: 4673143
    [No Abstract]   [Full Text] [Related]  

  • 18. [Zn-transport in ascites tumour cells (author's transl)].
    Günther Th; Dorn F
    Z Klin Chem Klin Biochem; 1971 Sep; 9(5):438-42. PubMed ID: 5173523
    [No Abstract]   [Full Text] [Related]  

  • 19. [The sodium pump].
    Gajdos A
    Presse Med (1893); 1967 Dec; 75(51):2615-20. PubMed ID: 4229359
    [No Abstract]   [Full Text] [Related]  

  • 20. Ion movements through the sodium pump.
    Kaplan JH
    Annu Rev Physiol; 1985; 47():535-44. PubMed ID: 2581504
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.