These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64 related articles for article (PubMed ID: 4676915)
1. [Movement perception by the movement fibre in the optic tract of the crayfish--analysis of temporal factors in movement perception]. Shimozawa T; Takeda T; Yamaguchi T Iyodenshi To Seitai Kogaku; 1972 Apr; 10(2):186-95. PubMed ID: 4676915 [No Abstract] [Full Text] [Related]
2. Habituation of the motion detectors of the crayfish optic nerve: their relationship to the visually evoked defense reflex. Glantz RM J Neurobiol; 1974; 5(6):489-510. PubMed ID: 4474360 [No Abstract] [Full Text] [Related]
3. Sustained oscillations, entrainment and lateral inhibition in the crayfish visual system. Nudelman HB; Glantz RM Fed Proc; 1977 Jun; 36(7):2042-4. PubMed ID: 862938 [No Abstract] [Full Text] [Related]
4. Response entrainment of movement fibers in the optic tract of crayfish. Shimozawa T Biol Cybern; 1975 Nov; 20(3-4):213-22. PubMed ID: 1203344 [No Abstract] [Full Text] [Related]
5. Circadian rhythm of responsiveness in crayfish visual units. Aréchiga H; Wiersma CA J Neurobiol; 1969; 1(1):71-85. PubMed ID: 5407039 [No Abstract] [Full Text] [Related]
6. The effect of motor activity on the reactivity of single visual units in the crayfish. Aréchiga H; Wiersma CA J Neurobiol; 1969; 1(1):53-69. PubMed ID: 5407038 [No Abstract] [Full Text] [Related]
7. Cortical neuronal responses to optic flow are shaped by visual strategies for steering. Page WK; Duffy CJ Cereb Cortex; 2008 Apr; 18(4):727-39. PubMed ID: 17621608 [TBL] [Abstract][Full Text] [Related]
8. Cortical area MSTd combines visual cues to represent 3-D self-movement. Logan DJ; Duffy CJ Cereb Cortex; 2006 Oct; 16(10):1494-507. PubMed ID: 16339087 [TBL] [Abstract][Full Text] [Related]
9. Flux, wavelength and movement discrimination in frogs: forebrain and midbrain contributions. Kicliter E Brain Behav Evol; 1973; 8(5):340-65. PubMed ID: 4545303 [No Abstract] [Full Text] [Related]
10. [Cycles of excitability and rhythmic reactions of visual cortex neurons upon pinpoint and diffuse light stimulation]. Supin AIa Neirofiziologiia; 1971; 3(3):252-9. PubMed ID: 5164195 [No Abstract] [Full Text] [Related]
12. Extraction of visual motion and optic flow. Fukushima K Neural Netw; 2008 Jun; 21(5):774-85. PubMed ID: 18280109 [TBL] [Abstract][Full Text] [Related]
13. Visual motion and the neural correlates of event perception. Zacks JM; Swallow KM; Vettel JM; McAvoy MP Brain Res; 2006 Mar; 1076(1):150-62. PubMed ID: 16473338 [TBL] [Abstract][Full Text] [Related]
14. Temporal features of input as crucial factors in vision. Bartley SH Contrib Sens Physiol; 1968; 3():81-124. PubMed ID: 4891050 [No Abstract] [Full Text] [Related]
15. Temporal dynamics of decision-making during motion perception in the visual cortex. Grossberg S; Pilly PK Vision Res; 2008 Jun; 48(12):1345-73. PubMed ID: 18452967 [TBL] [Abstract][Full Text] [Related]
16. Illusory percepts of moving patterns due to discrete temporal sampling. Simpson WA; Shahani U; Manahilov V Neurosci Lett; 2005 Feb; 375(1):23-7. PubMed ID: 15664116 [TBL] [Abstract][Full Text] [Related]
17. Gravitational and visual control of eye movement in crayfish. Hisada M Fortschr Zool; 1975; 23(1):162-73. PubMed ID: 1116807 [No Abstract] [Full Text] [Related]
18. Behind the optic nerve: an inside view of the primate visual system. Van Essen DC Trans Am Ophthalmol Soc; 1995; 93():123-33. PubMed ID: 8719674 [No Abstract] [Full Text] [Related]
19. On-chip visual perception of motion: a bio-inspired connectionist model on FPGA. Torres-Huitzil C; Girau B; Castellanos-Sánchez C Neural Netw; 2005; 18(5-6):557-65. PubMed ID: 16102939 [TBL] [Abstract][Full Text] [Related]
20. Neuroscience. Moving through the landscape. Bradley D Science; 2002 Mar; 295(5564):2385-6. PubMed ID: 11923517 [No Abstract] [Full Text] [Related] [Next] [New Search]