These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 4680245)

  • 21. Correlation of cholesterol to phospholipid content in membranes of growing mycoplasmas.
    Razin S
    FEBS Lett; 1974 Oct; 47(1):81-5. PubMed ID: 4426401
    [No Abstract]   [Full Text] [Related]  

  • 22. New aspects on membrane lipid regulation in Acholeplasma laidlawii A and phase equilibria of monoacyldiglucosyldiacylglycerol.
    Andersson AS; Rilfors L; Bergqvist M; Persson S; Lindblom G
    Biochemistry; 1996 Aug; 35(34):11119-30. PubMed ID: 8780516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconstitution of Mycoplasma membranes.
    Raxin S
    J Supramol Struct; 1974; 2(5-6):670-81. PubMed ID: 4461850
    [No Abstract]   [Full Text] [Related]  

  • 24. The effect of membrane-lipid phase transitions on membrane structure and on the growth of Acholeplasma laidlawii B.
    McElhaney RN
    J Supramol Struct; 1974; 2(5-6):617-28. PubMed ID: 4461849
    [No Abstract]   [Full Text] [Related]  

  • 25. Disposition of phosphatidylglycerol in metabolizing cells of Acholeplasma laidlawii.
    Bevers EM; Leblanc G; Le Grimellec C; Op den Kamp JA; van Deenen LL
    FEBS Lett; 1978 Mar; 87(1):49-51. PubMed ID: 631331
    [No Abstract]   [Full Text] [Related]  

  • 26. Turnover numbers for ionophore-catalyzed cation transport across the mitochondrial membrane.
    Haynes DH; Wiens T; Pressman BC
    J Membr Biol; 1974; 18(1):23-38. PubMed ID: 4855276
    [No Abstract]   [Full Text] [Related]  

  • 27. Characterization of the mycoplasma membrane proteins. I. Reaggregation of solubilized membrane proteins of Acholeplasma laidlawii.
    Kahane I; Razin S
    Biochim Biophys Acta; 1971 Oct; 249(1):159-68. PubMed ID: 5141123
    [No Abstract]   [Full Text] [Related]  

  • 28. Reversal of triparanol-induced cataracts in the rat. II. Exchange of 22 Na, 42 K, and 86 Rb in cataractous and clearing lenses.
    Harris JE; Gruber L
    Invest Ophthalmol; 1972 Jul; 11(7):608-16. PubMed ID: 5046560
    [No Abstract]   [Full Text] [Related]  

  • 29. [Transport system for carbohydrates using a model of membrane vesicles from Acholeplasma laidlawii cells].
    Panchenko LF; Fedotov NS; Tarshis MA
    Izv Akad Nauk SSSR Biol; 1978; (1):79-86. PubMed ID: 627681
    [No Abstract]   [Full Text] [Related]  

  • 30. Resting potential: membrane potential or phase boundary potential.
    Edelmann L
    Physiol Chem Phys; 1973; 5(5):449-52. PubMed ID: 4775590
    [No Abstract]   [Full Text] [Related]  

  • 31. The potassium permeability of pancreatic islet cells: mechanisms of control and influence on insulin release.
    Henquin JC
    Horm Metab Res Suppl; 1980; Suppl 10():66-73. PubMed ID: 7005065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The interaction of 2,4-dinitrophenol with anaerobic Rb+ transport across the yeast cell membrane.
    Borst-Pauwels GW; Wolters GH; Henricks JJ
    Biochim Biophys Acta; 1971 Feb; 225(2):269-76. PubMed ID: 5552810
    [No Abstract]   [Full Text] [Related]  

  • 33. The membrane potential of Ehrlich ascites tumor cells: an evaluation of the null point method.
    Smith TC; Robinson SC
    J Cell Physiol; 1981 Mar; 106(3):399-406. PubMed ID: 7217220
    [No Abstract]   [Full Text] [Related]  

  • 34. One hundred years of membrane permeability: does Overton still rule?
    Al-Awqati Q
    Nat Cell Biol; 1999 Dec; 1(8):E201-2. PubMed ID: 10587658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes.
    Tosteson DC; Andreoli TE; Tieffenberg M; Cook P
    J Gen Physiol; 1968 May; 51(5):Suppl:373S+. PubMed ID: 5659043
    [No Abstract]   [Full Text] [Related]  

  • 36. A novel method for the determination of electrical potentials across cellular membranes. II. Membrane potentials of Acholeplasmas, Mycoplasmas, Streptococci and erythrocytes.
    Schummer U; Schiefer HG; Gerhardt U
    Biochim Biophys Acta; 1980 Aug; 600(3):998-106. PubMed ID: 6773575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation and physicochemical properties of the polar lipids in Acholeplasma laidlawii.
    Rilfors L; Wieslander A; Lindblom G
    Subcell Biochem; 1993; 20():109-66. PubMed ID: 8378987
    [No Abstract]   [Full Text] [Related]  

  • 38. Valinomycin can depolarize mitochondria in intact lymphocytes without increasing plasma membrane potassium fluxes.
    Felber SM; Brand MD
    FEBS Lett; 1982 Dec; 150(1):122-4. PubMed ID: 7160466
    [No Abstract]   [Full Text] [Related]  

  • 39. [Structure and function of bacterial membranes to oxidative phosphorylation and membrane permeability].
    Asano A
    Tanpakushitsu Kakusan Koso; 1972 Aug; 17(8):573-80. PubMed ID: 4565194
    [No Abstract]   [Full Text] [Related]  

  • 40. [Isolation of membrane preparations from Acholeplasma laidlawii cells and their transport characteristics].
    Fedotov NS; Panchenko LF; Tarshis MA
    Mikrobiologiia; 1974; 43(3):543-5. PubMed ID: 4603647
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.