These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4683244)

  • 21. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia.
    Lopaschuk GD; Spafford MA; Davies NJ; Wall SR
    Circ Res; 1990 Feb; 66(2):546-53. PubMed ID: 2297817
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of emetine on metabolism and contractility of the isolated rat heart.
    Brink AJ; Kotzé JC; Muller SP; Lochner A
    J Pharmacol Exp Ther; 1969 Feb; 165(2):251-7. PubMed ID: 5763059
    [No Abstract]   [Full Text] [Related]  

  • 23. External detection and visualization of myocardial ischemia with 11C-substrates in vitro and in vivo.
    Weiss ES; Hoffman EJ; Phelps ME; Welch MJ; Henry PD; Ter-Pogossian MM; Sobel BE
    Circ Res; 1976 Jul; 39(1):24-32. PubMed ID: 776436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The inhibitory effect of octanoate, palmitate and oleate on glucose formation in rabbit kidney tubules.
    Zabłocki K; Gemel J; Bryła J
    Biochim Biophys Acta; 1983 May; 757(1):111-8. PubMed ID: 6838901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coronary flow rate and perfusion pressure as determinants of mechanical function and oxidative metabolism of isolated perfused rat heart.
    Opie LH
    J Physiol; 1965 Oct; 180(3):529-41. PubMed ID: 5846791
    [No Abstract]   [Full Text] [Related]  

  • 26. Effect of palmitic acid and fatty acid binding protein on ventricular fibrillation threshold in the perfused rat heart.
    Makiguchi M; Kawaguchi H; Tamura M; Yasuda H
    Cardiovasc Drugs Ther; 1991 Aug; 5(4):753-61. PubMed ID: 1888696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of oleate, palmitate, and octanoate on gluconeogenesis in isolated rabbit liver cells.
    Zaleski J; Bryla J
    Arch Biochem Biophys; 1977 Oct; 183(2):553-62. PubMed ID: 921276
    [No Abstract]   [Full Text] [Related]  

  • 28. Control of oxidative metabolism in volume-overloaded rat hearts: effects of different lipid substrates.
    Ben Cheikh R; Guendouz A; Moravec J
    Am J Physiol; 1994 May; 266(5 Pt 2):H2090-7. PubMed ID: 8203607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Renal Na+ and K+ transport: effects of glucose, palmitate, and alpha-bromopalmitate.
    Trimble ME; Bowman RH
    Am J Physiol; 1973 Nov; 225(5):1057-62. PubMed ID: 4745203
    [No Abstract]   [Full Text] [Related]  

  • 30. The influence of available substrate on contraction of the hypoxic myocardium.
    Brachfeld N; Apstein CS
    Cardiology; 1972; 57(1):47-50. PubMed ID: 5037891
    [No Abstract]   [Full Text] [Related]  

  • 31. Substrate metabolism in the perfused lung: response to changes in circulating glucose and palmitate levels.
    Shaw ME; Rhoades RA
    Lipids; 1977 Nov; 12(11):930-5. PubMed ID: 927046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An accurate and sensitive assay of [14C]octanoate oxidation and its application on tissue homogenates and fibroblasts.
    Veerkamp JH; van Moerkerk HT; Bakkeren JA
    Biochim Biophys Acta; 1986 Mar; 876(1):133-7. PubMed ID: 3081042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of epinephrine on myocardial triglyceride and free fatty acid utilization.
    Kreisberg RA
    Am J Physiol; 1966 Feb; 210(2):385-9. PubMed ID: 5901785
    [No Abstract]   [Full Text] [Related]  

  • 34. Effects of glucose starvation on the oxidation of fatty acids by maize root tip mitochondria and peroxisomes: evidence for mitochondrial fatty acid beta-oxidation and acyl-CoA dehydrogenase activity in a higher plant.
    Dieuaide M; Couée I; Pradet A; Raymond P
    Biochem J; 1993 Nov; 296 ( Pt 1)(Pt 1):199-207. PubMed ID: 8250843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Octanoate metabolism in the isolated perfused rat liver. II. Comparison with a long chain fatty acid.
    Bach A; Phan T; Métais P
    Arch Int Physiol Biochim; 1975 Feb; 83(1):99-109. PubMed ID: 50825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Octanoate and palmitate beta-oxidation in human leukocytes: implications for the rapid diagnosis of fatty acid beta-oxidation disorders.
    Wanders RJ; Ijlst L; van Elk E; de Klerk JB; Przyrembel H
    J Inherit Metab Dis; 1991; 14(3):317-20. PubMed ID: 1770782
    [No Abstract]   [Full Text] [Related]  

  • 37. Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle.
    Zhou YP; Grill VE
    J Clin Invest; 1994 Feb; 93(2):870-6. PubMed ID: 8113418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of ventricular pressure development and palmitate on glucose transport.
    Neely JR; Bowman RH; Morgan HE
    Am J Physiol; 1969 Apr; 216(4):804-11. PubMed ID: 5775879
    [No Abstract]   [Full Text] [Related]  

  • 39. Effect of the fatty acid oxidation inhibitor 2-tetradecylglycidic acid (TDGA) on glucose and fatty acid oxidation in isolated rat soleus muscle.
    Tuman RW; Joseph JM; Brentzel HJ; Tutwiler GF
    Int J Biochem; 1988; 20(2):155-60. PubMed ID: 3350201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of hexobendine on the function and metabolism of the isolated, perfused rat heart.
    Bester AJ; Rosenstrauch WC; Brink AJ
    S Afr Med J; 1971 Oct; 45(42):1188-92. PubMed ID: 5129490
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.