These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 468325)

  • 1. Changes in levels of glutathione, ascorbic acid, total sulfhydryl groups & RNA in the galactose exposed lens.
    Rawal UM; Rao GN
    Indian J Exp Biol; 1979 Jan; 17(1):91-3. PubMed ID: 468325
    [No Abstract]   [Full Text] [Related]  

  • 2. Changes in the levels of inorganic constituents in the galactose exposed lens.
    Rawal UM; Rao GN
    Indian J Exp Biol; 1980 Mar; 18(3):260-2. PubMed ID: 7390555
    [No Abstract]   [Full Text] [Related]  

  • 3. High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in cultured rat lens.
    Saxena P; Saxena AK; Monnier VM
    Exp Eye Res; 1996 Nov; 63(5):535-45. PubMed ID: 8994357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of UV-radiation on the level of ascorbic acid, SH-groups, and activity of glutathione reductase in the eye lens].
    Byshneva LN; Senchuk VV
    Vopr Med Khim; 2002; 48(5):455-60. PubMed ID: 12498087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physiological level of ascorbate inhibits galactose cataract in guinea pigs by decreasing polyol accumulation in the lens epithelium: a dehydroascorbate-linked mechanism.
    Yokoyama T; Sasaki H; Giblin FJ; Reddy VN
    Exp Eye Res; 1994 Feb; 58(2):207-18. PubMed ID: 8157113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of aqueous humor ascorbate on ultraviolet-B-induced DNA damage in lens epithelium.
    Reddy VN; Giblin FJ; Lin LR; Chakrapani B
    Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):344-50. PubMed ID: 9477992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reversal of triparanol-induced cataract in the rat. IV. Reduced sulfhydryl groups in soluble protein and glutathione.
    Rathbun WB; Harris JE; Vagstad G; Gruber L
    Invest Ophthalmol; 1973 May; 12(5):388-90. PubMed ID: 4708787
    [No Abstract]   [Full Text] [Related]  

  • 8. Enzymatic studies on the galactose exposed lens.
    Rawal UM; Rao GN
    Indian J Ophthalmol; 1980 Apr; 28(1):5-7. PubMed ID: 7203599
    [No Abstract]   [Full Text] [Related]  

  • 9. 'The reactivity of sulfhydryl groups in the normal lenses of albino rat (Rattus norvegicus Berkenhaut) and guinea pig (Cavia porcellus Linnaeus)'.
    Rawal UM; Rao GN
    Indian J Ophthalmol; 1979 Jul; 27(2):32-4. PubMed ID: 541028
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of topical glucocorticoid administration on the protein and nonprotein sulfhydryl groups of the rabbit lens.
    Costagliola C; Iuliano G; Menzione M; Apponi-Battini G; Auricchio G
    Ophthalmic Res; 1987; 19(6):351-6. PubMed ID: 3441357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in levels of ascorbic acid and reduced glutathione in brain of rats and guinea-pigs after total body x-ray irradiation.
    Tomana M
    Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove; 1966; 9(4):701-6. PubMed ID: 5226705
    [No Abstract]   [Full Text] [Related]  

  • 12. Alteration of lens disulfide bonds in newly developed hereditary cataract rat.
    Mizuno A; Shumiya S; Toshima S; Nakano T
    Jpn J Ophthalmol; 1992; 36(4):417-25. PubMed ID: 1289618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of galactose on the metabolism of the rat lens in vitro.
    Rawal UM; Rao GN
    Indian J Exp Biol; 1978 Apr; 16(4):499-501. PubMed ID: 680860
    [No Abstract]   [Full Text] [Related]  

  • 14. Changes in the water, protein, and glutathione contents of the lens in the course of galactose cataract development in rats.
    Sippel TO
    Invest Ophthalmol; 1966 Dec; 5(6):568-75. PubMed ID: 5927444
    [No Abstract]   [Full Text] [Related]  

  • 15. [Effect of glucose and galactose on protein synthesis in the lens].
    Sulcová H
    Cesk Oftalmol; 1968 Jul; 24(4):249-55. PubMed ID: 5682349
    [No Abstract]   [Full Text] [Related]  

  • 16. Chromium-picolinate induced ocular changes: Protective role of ascorbic acid.
    Mahmoud AA; Karam SH; Abdel-Wahhab MA
    Toxicology; 2006 Sep; 226(2-3):143-51. PubMed ID: 16889883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liver and lens glutathione and cysteine regulation in galactose-fed guinea pigs.
    Kannan R; Fernández-Checa JC; García-Ruiz C; Mackic JB; Zlokovic BV
    Curr Eye Res; 1997 Apr; 16(4):365-71. PubMed ID: 9134326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of glutathione and ascorbic acid in guinea pig lungs exposed to nitrogen dioxide.
    Leung HW; Morrow PE
    Res Commun Chem Pathol Pharmacol; 1981 Jan; 31(1):111-8. PubMed ID: 7255866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms by which ascorbic acid increases ferritin levels in cultured lens epithelial cells.
    Goralska M; Harned J; Grimes AM; Fleisher LN; McGahan MC
    Exp Eye Res; 1997 Mar; 64(3):413-21. PubMed ID: 9196393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drinking water supplementation with ascorbate is not protective against UVR-B-induced cataract in the guinea pig.
    Mody VC; Kakar M; Elfving A; Löfgren S
    Acta Ophthalmol; 2008 Mar; 86(2):188-95. PubMed ID: 17944982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.