These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 4684609)
1. Some aspects of the osmotic lysis of erythrocytes. 3. Comparison of glycerol permeability and lipid composition of red blood cell membranes from eight mammalian species. Wessels JM; Veerkamp JH Biochim Biophys Acta; 1973 Jan; 291(1):190-6. PubMed ID: 4684609 [No Abstract] [Full Text] [Related]
2. Some aspects of the osmotic lysis of erythrocytes. I. A reexamination of the osmotic lysis method. Wessels JM; Pals DT; Veerkamp JH Biochim Biophys Acta; 1973 Jan; 291(1):165-77. PubMed ID: 4684607 [No Abstract] [Full Text] [Related]
4. Glycerol permeability of erythrocytes. de Gier J; van Deenen LL; van Senden KG Experientia; 1966 Jan; 22(1):20-1. PubMed ID: 5915123 [No Abstract] [Full Text] [Related]
5. Interaction of alfalfa saponins with components of the erythrocyte membrane in hemolysis. Assa Y; Shany S; Gestetner B; Tencer Y; Birk Y; Bondi A Biochim Biophys Acta; 1973 Apr; 307(1):83-91. PubMed ID: 4736382 [No Abstract] [Full Text] [Related]
6. Composition of neutral lipids from erythrocytes of common mammals. Nelson GJ J Lipid Res; 1967 Jul; 8(4):374-9. PubMed ID: 6033604 [TBL] [Abstract][Full Text] [Related]
7. Comparative aspects of phosphate transfer across mammalian erythrocyte membranes. Gruber W; Deuticke B J Membr Biol; 1973 Aug; 13(1):19-36. PubMed ID: 4752450 [No Abstract] [Full Text] [Related]
8. The kinetics of malonamide-induced haemolysis of mammalian erythrocytes. I. The Arrhenius activation parameters. Coldman MF; Good W Biochim Biophys Acta; 1968 Mar; 150(2):194-205. PubMed ID: 5641889 [No Abstract] [Full Text] [Related]
9. The kinetics of malonamide-induced haemolysis of mammalian erythrocytes. II. The Eyring activation parameters. Coldman MF; Good W Biochim Biophys Acta; 1968 Mar; 150(2):206-13. PubMed ID: 5641890 [No Abstract] [Full Text] [Related]
10. Lipid composition of erythrocytes in various mammalian species. Nelson GJ Biochim Biophys Acta; 1967 Oct; 144(2):221-32. PubMed ID: 6064604 [No Abstract] [Full Text] [Related]
11. Water and nonelectrolytes permeability in mammalian red cell membranes. Sha'afi RI; Gary-Bobo CM Prog Biophys Mol Biol; 1973; 26():103-46. PubMed ID: 4575320 [No Abstract] [Full Text] [Related]
12. [Glycerol-induced hemolysis of mammalian erythrocytes and inhibition of the lysis by fructose (author's transl)]. Arakawa M; Kondo T; Mitsui H; Suzuki S; Shiba M Nihon Yakurigaku Zasshi; 1977 Jul; 73(5):541-7. PubMed ID: 924264 [TBL] [Abstract][Full Text] [Related]
13. Relationship between membrane function and permeability. 3. Further evidence linking membrane transport and thromboplastin availability of the intact erythrocyte. Cohen P Br J Haematol; 1968 Feb; 14(2):141-52. PubMed ID: 5635600 [No Abstract] [Full Text] [Related]
14. Protein patterns of red cell membranes from different mammalian species. Zwaal RF; van Deenen LL Biochim Biophys Acta; 1968 Aug; 163(1):44-9. PubMed ID: 5666777 [No Abstract] [Full Text] [Related]
15. Glycerol permeability of human fetal and adult erythrocytes and of a model membrane. Moore TJ J Lipid Res; 1968 Sep; 9(5):642-6. PubMed ID: 5726323 [TBL] [Abstract][Full Text] [Related]
16. The red blood cell membrane as a model for targets of drug action. Bolis L Prog Drug Res; 1973; 17():59-107. PubMed ID: 4593393 [No Abstract] [Full Text] [Related]
17. Studies on the mechanism of action of miconazole- II. Interaction of miconazole with mammalian erythrocytes. Swamy KH; Sirsi M; Rao GR Biochem Pharmacol; 1976 May; 25(10):1145-50. PubMed ID: 938538 [No Abstract] [Full Text] [Related]
18. Changes of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes. Grunze M; Deuticke B Biochim Biophys Acta; 1974 Jul; 356(1):125-30. PubMed ID: 4842691 [No Abstract] [Full Text] [Related]
19. Lack of influence of membrane cholesterol depletion on anion and nonelectrolyte permeability of pig erythrocytes. Deuticke B; Zöllner C Biochim Biophys Acta; 1972 Jun; 266(3):726-31. PubMed ID: 5040252 [No Abstract] [Full Text] [Related]
20. Role of oxygen radicals scavenging enzymes in the protoporphyrin induced photohemolysis. Finazzi-Agrò A; Floris G; Fadda MB; Crifò C Experientia; 1979 Nov; 35(11):1445-7. PubMed ID: 510472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]