These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 4684717)

  • 1. Sugar transport. VII. Lactose transport in Staphylococcus aureus.
    Simoni RD; Roseman S
    J Biol Chem; 1973 Feb; 248(3):966-74. PubMed ID: 4684717
    [No Abstract]   [Full Text] [Related]  

  • 2. Sugar transport. VI. Phosphoryl transfer in the lactose phosphotransferase system of Staphylococcus aureus.
    Simoni RD; Hays JB; Nakazawa T; Roseman S
    J Biol Chem; 1973 Feb; 248(3):957-65. PubMed ID: 4684716
    [No Abstract]   [Full Text] [Related]  

  • 3. Sugar transport. IV. Isolation and characterization of the lactose phosphotransferase system in Staphylococcus aureus.
    Simoni RD; Nakazawa T; Hays JB; Roseman S
    J Biol Chem; 1973 Feb; 248(3):932-40. PubMed ID: 4567791
    [No Abstract]   [Full Text] [Related]  

  • 4. On the interpretation of Michaelis constants for transport.
    Schachter H
    J Biol Chem; 1973 Feb; 248(3):974-6. PubMed ID: 4684718
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on the relation of thiomethyl-beta-D-galactoside accumulation to thiomethyl-beta-D-galactoside phosphorylation in Staphylococcus aureus HS1159.
    Laue P; MacDonald RE
    Biochim Biophys Acta; 1968 Oct; 165(3):410-8. PubMed ID: 5737935
    [No Abstract]   [Full Text] [Related]  

  • 6. Membrane transport as a potential target for antibiotic action.
    Walsh CT; Kaback HR
    Ann N Y Acad Sci; 1974 May; 235(0):519-41. PubMed ID: 4604751
    [No Abstract]   [Full Text] [Related]  

  • 7. Carbohydrate transport in Staphylococcus aureus. 3. Studies of the transport process.
    Egan JB; Morse ML
    Biochim Biophys Acta; 1966 Jan; 112(1):63-73. PubMed ID: 5947899
    [No Abstract]   [Full Text] [Related]  

  • 8. The bacterial phosphoenolpyruvate: sugar phosphotransferase system.
    Postma PW; Roseman S
    Biochim Biophys Acta; 1976 Dec; 457(3-4):213-57. PubMed ID: 187249
    [No Abstract]   [Full Text] [Related]  

  • 9. Carbohydrate transport in Staphylococcus aureus. V. The accumulation of phosphorylated carbohydrate derivatives, and evidence for a new enzyme-splitting lactose phosphate.
    Hengstenberg W; Egan JB; Morse ML
    Proc Natl Acad Sci U S A; 1967 Jul; 58(1):274-9. PubMed ID: 4292101
    [No Abstract]   [Full Text] [Related]  

  • 10. Lactose and D0galactose metabolism in Staphylococcus aureus: pathway of D-galactose 6-phosphate degradation.
    Bissett DL; Anderson RL
    Biochem Biophys Res Commun; 1973 May; 52(2):641-7. PubMed ID: 4711177
    [No Abstract]   [Full Text] [Related]  

  • 11. Genetic control of inducer exclusion by Escherichia coli.
    Jones-Mortimer MC; Kornberg HL
    FEBS Lett; 1974 Nov; 48(1):93-5. PubMed ID: 4609803
    [No Abstract]   [Full Text] [Related]  

  • 12. Sugar transport. V. A trimeric lactose-specific phosphocarrier protein of the Staphylococcus aureus phosphotransferase system.
    Hays JB; Simoni RD; Roseman S
    J Biol Chem; 1973 Feb; 248(3):941-56. PubMed ID: 4684715
    [No Abstract]   [Full Text] [Related]  

  • 13. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli.
    Kaback HR
    J Biol Chem; 1968 Jul; 243(13):3711-24. PubMed ID: 4872728
    [No Abstract]   [Full Text] [Related]  

  • 14. Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system.
    Saier MH; Roseman S
    J Biol Chem; 1976 Nov; 251(21):6606-15. PubMed ID: 789370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate transport in Staphylococcus aureus. IV. Maltose accumulation and metabolism.
    Button DK; Egan JB; Hengstenberg W; Morse ML
    Biochem Biophys Res Commun; 1973 Jun; 52(3):850-5. PubMed ID: 4710567
    [No Abstract]   [Full Text] [Related]  

  • 16. [Vectorial phosphorylation, a mechanism of carbohydrate transport in bacteria].
    Hengstenberg W; Schrecker O
    Zentralbl Bakteriol Orig A; 1974; 228(1):246-7. PubMed ID: 4154674
    [No Abstract]   [Full Text] [Related]  

  • 17. [Mutants with abnormal transport of sugars].
    Otsuji N; Horiuchi T
    Tanpakushitsu Kakusan Koso; 1972; 17():Suppl:173-6. PubMed ID: 4559522
    [No Abstract]   [Full Text] [Related]  

  • 18. The inhibition of sugar transport in chick embryo fibroblasts by cytochalasin B. Evidence for a membrane-specific effect.
    Kletzien RF; Perdue JF
    J Biol Chem; 1973 Jan; 248(2):711-9. PubMed ID: 4734334
    [No Abstract]   [Full Text] [Related]  

  • 19. Carbohydrate transport in Staphylococcus aureus. VI. The nature of the derivatives accumulated.
    Hengstenberg W; Egan JB; Morse ML
    J Biol Chem; 1968 Apr; 243(8):1881-5. PubMed ID: 4869132
    [No Abstract]   [Full Text] [Related]  

  • 20. Photoinactivation of the Staphylococcus aureus Lactose-Specific EIICB Phosphotransferase Component with p-azidophenyl-β-D-Galactoside and Phosphorylation of the Covalently Bound Substrate.
    Sossna-Wunder G; Hengstenberg W; Briozzo P; Deutscher J
    J Mol Microbiol Biotechnol; 2018; 28(3):147-158. PubMed ID: 30522128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.