These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 468587)

  • 21. The pulmonary bioprosthetic heart valve: its unsuitability for use as an aortic valve replacement.
    Jennings LM; Butterfield M; Booth C; Watterson KG; Fisher J
    J Heart Valve Dis; 2002 Sep; 11(5):668-78; discussion 679. PubMed ID: 12358404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superior function of a bicuspid over a monocuspid patch for reconstruction of a hypoplastic pulmonary root in pigs.
    Sievers HH; Storde U; Rohwedder EB; Lange PE; Onnasch DG; Heintzen PH; Bernhard A
    J Thorac Cardiovasc Surg; 1993 Apr; 105(4):580-90. PubMed ID: 8468992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural changes in glutaraldehyde-treated porcine heterografts used as substitute cardiac valves. Transmission and scanning electron microscopic observations in 12 patients.
    Ferrans VJ; Spray TL; Billingham ME; Roberts WC
    Am J Cardiol; 1978 Jun; 41(7):1159-84. PubMed ID: 96684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical valve thrombosis in a chronic animal model: differences between monoleaflet and bileaflet valves.
    Meuris B; Verbeken E; Flameng W
    J Heart Valve Dis; 2005 Jan; 14(1):96-104. PubMed ID: 15700443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves.
    Kasimir MT; Rieder E; Seebacher G; Nigisch A; Dekan B; Wolner E; Weigel G; Simon P
    J Heart Valve Dis; 2006 Mar; 15(2):278-86; discussion 286. PubMed ID: 16607912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphological study of flow surface of glutaraldehyde pre-treated vascular substitutes.
    Harjula A; Myllärniemi H; Nickels J; Mattila S
    Ann Chir Gynaecol; 1980; 69(4):144-50. PubMed ID: 7469366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural changes of glutaraldehyde- treated porcine bioprosthetic valves.
    Camilleri JP; Pornin B; Carpentier A
    Arch Pathol Lab Med; 1982 Oct; 106(10):490-6. PubMed ID: 6812544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural modification and cryopreservation of porcine heart valves for xenotransplantation with reduced immunity.
    Erez E; Sandbank J; Stamler A; Raanani E; Sharoni E; Vidne BA; Barak J
    J Heart Valve Dis; 2001 Jan; 10(1):125-8. PubMed ID: 11206759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scanning electron microscopy methodology for study of the pathophysiology of calcification in bioprosthetic heart valves.
    Nelson AC; Schoen FJ; Levy RJ
    Scan Electron Microsc; 1985; (Pt 1):209-13. PubMed ID: 4001850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immunologically untreated fresh xenograft implantation in a pig-to-goat model.
    Sung K; Kim WG; Seo JW
    Artif Organs; 2008 Oct; 32(10):810-5. PubMed ID: 18959669
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Construction and evaluation of the property of decellular porcine aortic valve].
    Liu WY; Jin ZX; Gu CH; Zhao DE; Tan HM
    Zhonghua Yi Xue Za Zhi; 2005 Feb; 85(5):324-7. PubMed ID: 15854509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets.
    Courtman DW; Pereira CA; Omar S; Langdon SE; Lee JM; Wilson GJ
    J Biomed Mater Res; 1995 Dec; 29(12):1507-16. PubMed ID: 8600141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tissue-engineered heart valve leaflets: an effective method of obtaining acellularized valve xenografts.
    Kim WG; Park JK; Lee WY
    Int J Artif Organs; 2002 Aug; 25(8):791-7. PubMed ID: 12296464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural changes in a porcine xenograft after implantation for 105 months.
    Sade RM; Greene WB; Kurtz SM
    Am J Cardiol; 1979 Oct; 44(4):761-6. PubMed ID: 573547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sovering annuloplasty rings: experimental pathology in the sheep model.
    Della Barbera M; Laborde F; Thiene G; Arata V; Pettenazzo E; Pasquino E; Behr L; Valente M
    Cardiovasc Pathol; 2005; 14(2):96-103. PubMed ID: 15780801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early tissue infiltrate in porous polyethylene implants into bone: a scanning electron microscope study.
    Spector M; Flemming WR; Sauer BW
    J Biomed Mater Res; 1975 Sep; 9(5):537-42. PubMed ID: 1176523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scanning electron microscopy of experimental thrombus formation in canine lateral saphena vein.
    Hatsuoka M; Makita T
    Scan Electron Microsc; 1981; 4():189-94. PubMed ID: 7347422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calcification of porcine bioprosthesis implanted into human heart: high resolution scanning electron microscopic and scanning tunneling microscopic investigation.
    Lee YS
    J Electron Microsc (Tokyo); 1994 Jun; 43(3):131-40. PubMed ID: 7964262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material.
    Lee JM; Courtman DW; Boughner DR
    J Biomed Mater Res; 1984 Jan; 18(1):61-77. PubMed ID: 6699033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Patient-adapted valve selection: biological vs. mechanical heart valve replacement in aortic valve diseases].
    Brose S; Autschbach R; Rauch T; Engel M; Mohr FW
    Z Kardiol; 2001; 90 Suppl 6():48-57. PubMed ID: 11826822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.