These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 468735)

  • 1. Bioconversion and biosynthesis of 16-membered macrolide antibiotics. XIII. Regulation of spiramycin I 3-hydroxyl acylase formation by glucose, butyrate, and cerulenin.
    Kitao C; Ikeda H; Hamada H; Omura S
    J Antibiot (Tokyo); 1979 Jun; 32(6):593-9. PubMed ID: 468735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioconversion and biosynthesis of 16-membered macrolide antibiotic, tylosin, using enzyme inhibitor: cerulenin.
    Omura S; Kitao C; Miyazawa J; Imai H; Takeshima H
    J Antibiot (Tokyo); 1978 Mar; 31(3):254-6. PubMed ID: 649519
    [No Abstract]   [Full Text] [Related]  

  • 3. Bioconversion and biosynthesis of 16-membered macrolide antibiotics. X. Final steps in the biosynthesis of spiramycin, using enzyme inhibitor: cerulenin.
    Omura S; Kitao C; Hamada H; Ikeda H
    Chem Pharm Bull (Tokyo); 1979 Jan; 27(1):176-82. PubMed ID: 428024
    [No Abstract]   [Full Text] [Related]  

  • 4. Inhibition of the biosynthesis of leucomycin, a macrolide antibiotic, by cerulenin.
    Takeshima H; Kitao C; Omura S
    J Biochem; 1977 Apr; 81(4):1127-32. PubMed ID: 881413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid biosynthesis of derivatives of protylonolide and M-4365 by macrolide-producing microorganisms.
    Sadakane N; Tanaka Y; Omura S
    J Antibiot (Tokyo); 1982 Jun; 35(6):680-7. PubMed ID: 7118724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioconversion and biosynthesis of 16-membered macrolide antibiotics. XV. Final steps in the biosynthesis of leucomycins.
    Kitao C; Hamada H; Ikeda H; Omura S
    J Antibiot (Tokyo); 1979 Oct; 32(10):1055-7. PubMed ID: 528366
    [No Abstract]   [Full Text] [Related]  

  • 7. [Acylation specificity of midecamycin 3-O-acyltransferase within Streptomyces spiramyceticus F21].
    Ma C; Wu L; Dai J; Zhou H; Li J; Sun X; Zhang K; Xia H; Wang Y
    Sheng Wu Gong Cheng Xue Bao; 2008 Dec; 24(12):2086-92. PubMed ID: 19306580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of spiramycin synthesis in Streptomyces ambofaciens: effects of glucose and inorganic phosphate.
    Lounès A; Lebrihi A; Benslimane C; Lefebvre G; Germain P
    Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):204-11. PubMed ID: 8920193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and properties of spiramycin I 3-hydroxyl acylase from Streptomyces and ambofaciens.
    Omura S; Ikeda H; Kitao C
    J Biochem; 1979 Dec; 86(6):1753-8. PubMed ID: 528537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioconversion and biosynthesis of nanaomycins using cerulenin, a specific inhibitor of fatty acid and polyketide biosyntheses.
    Kitao C; Tanaka H; Minami S; Omura S
    J Antibiot (Tokyo); 1980 Jul; 33(7):711-6. PubMed ID: 7410214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and biochemical features of spiramycin biosynthesis in Streptomyces ambofaciens--curing, protoplast regeneration and plasmid transfer.
    Ikeda H; Tanaka H; Omura S
    J Antibiot (Tokyo); 1982 Apr; 35(4):507-16. PubMed ID: 7096204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The microbial transformation of tylosin by the spiramycin-producing strain, Streptomyces ambofaciens KA-1028.
    Omura S; Kitao C; Sadakane N
    J Antibiot (Tokyo); 1980 Aug; 33(8):911-2. PubMed ID: 7429995
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on the biosynthesis of 16-membered macrolide antibiotics using carbon-13 nuclear magnetic resonance spectroscopy.
    Omura S; Takeshima H; Nakagawa A; Miyazawa J; Piriou F; Lukacs G
    Biochemistry; 1977 Jun; 16(13):2860-6. PubMed ID: 18162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The detection of a plasmid in Streptomyces ambofaciens KA-1028 and its possible involvement in spiramycin production.
    Omura S; Ikeda H; Kitao C
    J Antibiot (Tokyo); 1979 Oct; 32(10):1058-60. PubMed ID: 528367
    [No Abstract]   [Full Text] [Related]  

  • 15. Inhibitory effect of cerulenin and sodium butyrate on germination of Candida albicans.
    Hoberg KA; Cihlar RL; Calderone RA
    Antimicrob Agents Chemother; 1983 Sep; 24(3):401-8. PubMed ID: 6357077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconversion of leucomycins and its regulation by butyrate in a producing strain.
    Omura S; Miyazawa J; Takeshima H; Kitao C; Atsumi K
    J Antibiot (Tokyo); 1976 Oct; 29(10):1131-3. PubMed ID: 994332
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification of two regulatory genes involved in carbomycin biosynthesis in Streptomyces thermotolerans.
    Zhong J; Lu Z; Dai J; He W
    Arch Microbiol; 2017 Sep; 199(7):1023-1033. PubMed ID: 28389815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cerulenin and sodium butyrate on chitin synthesis in Candida albicans.
    Braun PC; Hector RF; Kamark ME; Hart JT; Cihlar RL
    Can J Microbiol; 1987 Jun; 33(6):546-50. PubMed ID: 2957042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of valine catabolism by ammonium in Streptomyces ambofaciens, producer of spiramycin.
    Lounès A; Lebrihi A; Benslimane C; Lefebvre G; Germain P
    Can J Microbiol; 1995 Sep; 41(9):800-8. PubMed ID: 7585357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increase of the expression of midecamycin 4"-hydroxyl propionyltransferase gene (mpt) by a promoter-like fragment from the midecamycin producing strain.
    Gu H; Wang Y; Xu X; Wei X; Fong M
    Chin J Biotechnol; 1996; 12(3):147-52. PubMed ID: 9093756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.