These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 4687681)

  • 21. Communication: Electronic UV-Vis transient spectra of the ∙OH reaction products of uracil, thymine, cytosine, and 5,6-dihydrouracil by using the complete active space self-consistent field second-order perturbation (CASPT2//CASSCF) theory.
    Francés-Monerris A; Merchán M; Roca-Sanjuán D
    J Chem Phys; 2013 Aug; 139(7):071101. PubMed ID: 23968062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The electron affinities of deprotonated adenine, guanine, cytosine, uracil, and thymine.
    Chen EC; Wiley JR; Chen ES
    Nucleosides Nucleotides Nucleic Acids; 2008 May; 27(5):506-24. PubMed ID: 18569789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short-lived free radicals in aqueous solutions of biomolecules.
    Singh BB; Nicolau C
    Prog Biophys Mol Biol; 1971; 23():21-65. PubMed ID: 4946432
    [No Abstract]   [Full Text] [Related]  

  • 24. Transient and stable products in the pulse radiolysis of some dihydropyrimidine solutions.
    Barszcz D; Fielden EM
    Int J Radiat Biol Relat Stud Phys Chem Med; 1974 Jun; 25(6):539-53. PubMed ID: 4547602
    [No Abstract]   [Full Text] [Related]  

  • 25. Prototropic interactions of pyrimidine nucleic acid bases with acridine: a spectroscopic investigation.
    Sarangi MK; Mitra A; Basu S
    J Phys Chem B; 2012 Aug; 116(34):10275-82. PubMed ID: 22816664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Substrate specificity of the Escherichia coli endonuclease III: excision of thymine- and cytosine-derived lesions in DNA produced by radiation-generated free radicals.
    Dizdaroglu M; Laval J; Boiteux S
    Biochemistry; 1993 Nov; 32(45):12105-11. PubMed ID: 8218289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An ESR study of short-lived radicals derived from pyrimidines in aqueous solution.
    Nicolau C; McMillan M; Norman RO
    Biochim Biophys Acta; 1969 Feb; 174(2):413-22. PubMed ID: 4304807
    [No Abstract]   [Full Text] [Related]  

  • 28. The reaction of solvated electrons with cytosine, 5-methyl cytosine and 2'-deoxycytidine in squeous solution. The reaction of the electron adduct intermediates with water, p-nitroacetophenone and oxygen. A pulse spectroscopic and pulse conductometric study.
    Hissung A; von Sonntag C
    Int J Radiat Biol Relat Stud Phys Chem Med; 1979 May; 35(5):449-58. PubMed ID: 38222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-electron redox reactions of free radicals in solution. Rate of electron transfer processes to quinones.
    Rao PS; Hayon E
    Biochim Biophys Acta; 1973 Apr; 292(3):516-33. PubMed ID: 4705443
    [No Abstract]   [Full Text] [Related]  

  • 30. UV-excitation from an experimental perspective: frequency resolved.
    de Vries MS
    Top Curr Chem; 2015; 355():33-56. PubMed ID: 25388412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of ultrasound on nucleic acid bases.
    McKee JR; Christman CL; O'Brien WD; Wang SY
    Biochemistry; 1977 Oct; 16(21):4651-4. PubMed ID: 911781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Postirradiation long-range energy transfer in a single crystal of cytosine monohydrate: an EPR study.
    Sankovic K; Krilov D; Herak JN
    Radiat Res; 1991 Nov; 128(2):119-24. PubMed ID: 1658844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does removal of hydrogen change the electron energy-loss spectra of DNA bases?
    Schnabl H
    Ultramicroscopy; 1980; 5(2):147-51. PubMed ID: 7394898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of pyrimidine bases in biological materials by gas chromatography-mass spectrometry.
    Marunaka T; Umeno Y; Minami Y
    J Chromatogr; 1980 Mar; 190(1):107-12. PubMed ID: 7380941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Charge transfer between nucleic acid bases and chloranil.
    Machmer P; Duchesne J
    Nature; 1965 May; 206(984):618-9. PubMed ID: 5832835
    [No Abstract]   [Full Text] [Related]  

  • 36. The influence of packing on free radical yields in crystalline nucleic acids: the pyrimidine bases.
    Bernhard WA; Barnes J; Mercer KR; Mroczka N
    Radiat Res; 1994 Nov; 140(2):199-214. PubMed ID: 7938469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acetylene as an essential building block for prebiotic formation of pyrimidine bases on Titan.
    Jeilani YA; Fearce C; Nguyen MT
    Phys Chem Chem Phys; 2015 Oct; 17(37):24294-303. PubMed ID: 26325173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the possibility of excimer state formation in homodimers of the pyrimidine bases.
    Shulga SM; Danilov VI
    Nucleic Acids Res; 1976 Apr; 3(4):1095-9. PubMed ID: 1272804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A RAPID METHOD FOR THE SEPARATION OF NUCLEIC ACID BASES.
    HOLDGATE DP; GOODWIN TW
    Biochim Biophys Acta; 1964 Oct; 91():328-9. PubMed ID: 14240652
    [No Abstract]   [Full Text] [Related]  

  • 40. Structure-wise discrimination of cytosine, thymine, and uracil by proteins in terms of their nonbonded interactions.
    Usha S; Selvaraj S
    J Biomol Struct Dyn; 2014; 32(10):1686-704. PubMed ID: 24028440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.