These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 468786)

  • 1. Nucleation-controlled aggregation of deoxyhemoglobin S. Possible difference in the size of nuclei in different phosphate concentrations.
    Adachi K; Asakura T
    J Biol Chem; 1979 Aug; 254(16):7765-71. PubMed ID: 468786
    [No Abstract]   [Full Text] [Related]  

  • 2. Nucleation-controlled aggregation of deoxyhemoglobin S. Participation of hemoglobin A in the aggregation of deoxyhemoglobin S in concentrated phosphate buffer.
    Adachi K; Ozguc M; Asakura T
    J Biol Chem; 1980 Apr; 255(7):3092-9. PubMed ID: 7358731
    [No Abstract]   [Full Text] [Related]  

  • 3. Formation of nuclei during delay time prior to aggregation of deoxyhemoglobin S in concentrated phosphate buffer.
    Adachi K; Asakura T; McConnell ML
    Biochim Biophys Acta; 1979 Oct; 580(2):405-10. PubMed ID: 518907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleation-controlled aggregation of deoxyhemoglobin S. Participation of hemoglobin F in the aggregation of deoxyhemoglobin S in concentrated phosphate buffer.
    Adachi K; Segal R; Asakura T
    J Biol Chem; 1980 Aug; 255(16):7595-603. PubMed ID: 6156939
    [No Abstract]   [Full Text] [Related]  

  • 5. Nucleation-controlled aggregation of deoxyhemoglobin S. Effect of organic phosphates on the kinetics of aggregation of deoxyhemoglobin S in concentrated phosphate buffer.
    Adachi K; Matarasso SL; Asakura T
    Biochim Biophys Acta; 1980 Aug; 624(2):372-7. PubMed ID: 7417483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of a delay time during aggregation of diluted solutions of deoxyhemoglobin S and hemoglobin CHarlem in concentrated phosphate buffer.
    Adachi K; Asakura T
    J Biol Chem; 1978 Oct; 253(19):6641-3. PubMed ID: 690112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation of deoxyhemoglobin S at low concentrations.
    Elbaum D; Nagel RL; Herskovits TT
    J Biol Chem; 1976 Dec; 251(23):7657-60. PubMed ID: 1002706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand kinetics of hemoglobin S containing erythrocytes.
    Harrington JP; Elbaum D; Bookchin RM; Wittenberg JB; Nagel RL
    Proc Natl Acad Sci U S A; 1977 Jan; 74(1):203-6. PubMed ID: 264675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular dichroism of aggregated deoxyhemoglobin S and the effect of amino acids.
    Sophianopoulos JA; Sophianopoulos AJ; Knowles JS; Jue DL
    Arch Biochem Biophys; 1976 Feb; 172(2):590-9. PubMed ID: 4021
    [No Abstract]   [Full Text] [Related]  

  • 10. The interaction of anions with hemoglobin carbamylated on specific NH2-terminal residues.
    Nigen AM; Manning JM
    J Biol Chem; 1975 Oct; 250(20):8248-50. PubMed ID: 1176467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncovalent modification of deoxyhemoglobin S solubility and erythrocyte sickling.
    Waterman MR; Yamaoka K; Dahm L; Taylor J; Cottam GL
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2222-5. PubMed ID: 4526343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of the polymerization of hemoglobin in high and low phosphate buffers.
    Adachi K; Asakura T
    Blood Cells; 1982; 8(2):213-24. PubMed ID: 6186320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A temperature-dependent latent-period in the aggregation of sickle-cell deoxyhemoglobin.
    Malfa R; Steinhardt J
    Biochem Biophys Res Commun; 1974 Aug; 59(3):887-93. PubMed ID: 4411783
    [No Abstract]   [Full Text] [Related]  

  • 14. Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease.
    Hofrichter J; Ross PD; Eaton WA
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4864-8. PubMed ID: 4531026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleation, fiber growth and melting, and domain formation and structure in sickle cell hemoglobin gels.
    Briehl RW
    J Mol Biol; 1995 Feb; 245(5):710-23. PubMed ID: 7844835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of erythrocyte membranes on the nucleation of sickle hemoglobin.
    Aprelev A; Rotter MA; Etzion Z; Bookchin RM; Briehl RW; Ferrone FA
    Biophys J; 2005 Apr; 88(4):2815-22. PubMed ID: 15653736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of red cell membrane on the polymerization of sickle hemoglobin.
    Goldberg MA; Lalos AT; Himmelstein B; Bunn HF
    Blood Cells; 1982; 8(2):237-43. PubMed ID: 7159748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism.
    Ferrone FA; Hofrichter J; Sunshine HR; Eaton WA
    Biophys J; 1980 Oct; 32(1):361-80. PubMed ID: 7248455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of T-R conformational change on sickle-cell hemoglobin interactions and aggregation.
    Vaiana SM; Rotter MA; Emanuele A; Ferrone FA; Palma-Vittorelli MB
    Proteins; 2005 Feb; 58(2):426-38. PubMed ID: 15573374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oligopeptides as potential antiaggregation agents for deoxyhemoglobin S.
    Kubota S; Yang JT
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5431-4. PubMed ID: 271966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.