These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 468786)

  • 21. The effect of erythrocyte membrane preparations on the polymerization of sickle hemoglobin.
    Goldberg MA; Lalos AT; Bunn HF
    J Biol Chem; 1981 Jan; 256(1):193-7. PubMed ID: 7451434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of organic compounds on the crystal habit and crystallization of normal and sickle cell hemoglobin in phosphate buffer.
    Farnell KJ; McMeekin TL
    Arch Biochem Biophys; 1973 Oct; 158(2):702-10. PubMed ID: 4782530
    [No Abstract]   [Full Text] [Related]  

  • 23. Temperature and domain size dependence of sickle cell hemoglobin polymer melting in high concentration phosphate buffer.
    Louderback JG; Aroutiounian SK; Kerr WC; Ballas SK; Kim-Shapiro DB
    Biophys Chem; 1999 Jul; 80(1):21-30. PubMed ID: 10457594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solubility of fluoromethemoglobin S: effect of phosphate and temperature on polymerization.
    Yohe ME; Sheffield KM; Mukerji I
    Biophys J; 2000 Jun; 78(6):3218-26. PubMed ID: 10827998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polymorphic assemblies of double strands of sickle cell hemoglobin. Manifold pathways of deoxyhemoglobin S crystallization.
    Wellems TE; Vassar RJ; Josephs R
    J Mol Biol; 1981 Dec; 153(4):1011-26. PubMed ID: 7343677
    [No Abstract]   [Full Text] [Related]  

  • 26. Interaction of sickle cell hemoglobin with erythrocyte membranes.
    Shaklai N; Sharma VS; Ranney HM
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):65-8. PubMed ID: 6941263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polymerization of carbamylated deoxyhemoglobin S in concentrated phosphate buffer.
    Ip CY; Asakura T; Adachi K
    J Biol Chem; 1982 Nov; 257(21):12853-6. PubMed ID: 7130183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aggregation and crystallization of hemoglobins A, S, and C. Probable formation of different nuclei for gelation and crystallization.
    Adachi K; Asakura T
    J Biol Chem; 1981 Feb; 256(4):1824-30. PubMed ID: 7462225
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sickle hemoglobin gelation. Reaction order and critical nucleus size.
    Behe MJ; Englander SW
    Biophys J; 1978 Jul; 23(1):129-45. PubMed ID: 667302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gelation of deoxyhemoglobin A in concentrated phosphate buffer. Exhibition of delay time prior to aggregation and crystallization of deoxyhemoglobin A.
    Adachi K; Asakura T
    J Biol Chem; 1979 Dec; 254(24):12273-6. PubMed ID: 500713
    [No Abstract]   [Full Text] [Related]  

  • 31. Inhibitory effect of deoxyhemoglobin A2 on the rate of deoxyhemoglobin S polymerization.
    Waterman MR; Cottam GL; Shibata K
    J Mol Biol; 1979 Apr; 129(2):337-41. PubMed ID: 480348
    [No Abstract]   [Full Text] [Related]  

  • 32. Aggregation of hemoglobin S modified by bifunctional imidoesters.
    Adachi K; Kikugawa K; Asakura T
    Biochim Biophys Acta; 1983 Feb; 742(3):597-606. PubMed ID: 6838892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of the gelation of extracellular and intracellular hemoglobin S by selective acetylation with methyl acetyl phosphate.
    Ueno H; Benjamin LJ; Pospischil MA; Manning JM
    Biochemistry; 1987 Jun; 26(11):3125-9. PubMed ID: 3607016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the state of deoxyhemoglobin S molecules in solution and in fibers by hydrogen exchange kinetics.
    Hallaway BE; Hallaway PE
    Arch Biochem Biophys; 1984 Nov; 234(2):552-8. PubMed ID: 6437331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystallization of deoxyhemoglobin S by fiber alignment and fusion.
    Wellems TE; Josephs R
    J Mol Biol; 1979 Dec; 135(3):651-74. PubMed ID: 43904
    [No Abstract]   [Full Text] [Related]  

  • 36. Viscosity studies of deoxyhemoglobin S: evidence for formation of microaggregates during the lag phase.
    Danish EH; Harris JW
    J Lab Clin Med; 1983 Apr; 101(4):515-26. PubMed ID: 6833825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The rates of polymerization and depolymerization of sickle cell hemoglobin.
    Moffat K; Gibson QH
    Biochem Biophys Res Commun; 1974 Nov; 61(1):237-42. PubMed ID: 4441395
    [No Abstract]   [Full Text] [Related]  

  • 38. Electron microscope study of the kinetics of the fiber-to-crystal transition of sickle cell hemoglobin.
    Wilson SM; Makinen MW
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):944-8. PubMed ID: 6928690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-step mechanism of homogeneous nucleation of sickle cell hemoglobin polymers.
    Galkin O; Pan W; Filobelo L; Hirsch RE; Nagel RL; Vekilov PG
    Biophys J; 2007 Aug; 93(3):902-13. PubMed ID: 17449671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sickle hemoglobin polymer melting in high concentration phosphate buffer.
    Louderback JG; Ballas SK; Kim-Shapiro DB
    Biophys J; 1999 Apr; 76(4):2216-22. PubMed ID: 10096916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.