These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 468816)

  • 61. Malonyl CoA inhibition of carnitine acyltransferase activities: effects of thiol-group reagents.
    Saggerson ED; Carpenter CA
    FEBS Lett; 1982 Jan; 137(1):124-8. PubMed ID: 7067817
    [No Abstract]   [Full Text] [Related]  

  • 62. Regulation of the long-chain carnitine acyltransferases.
    Brady PS; Ramsay RR; Brady LJ
    FASEB J; 1993 Aug; 7(11):1039-44. PubMed ID: 8370473
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evidence for an impaired long-chain fatty acid oxidation and ketogenesis in Fao hepatoma cells.
    Prip-Buus C; Bouthillier-Voisin AC; Kohl C; Demaugre F; Girard J; Pegorier JP
    Eur J Biochem; 1992 Oct; 209(1):291-8. PubMed ID: 1356769
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Carnitine acyltransferase activities in rat brain mitochondria. Bimodal distribution, kinetic constants, regulation by malonyl-CoA and developmental pattern.
    Bird MI; Munday LA; Saggerson ED; Clark JB
    Biochem J; 1985 Feb; 226(1):323-30. PubMed ID: 3977877
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat.
    McGarry JD; Mills SE; Long CS; Foster DW
    Biochem J; 1983 Jul; 214(1):21-8. PubMed ID: 6615466
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The carnitine acyltransferases and their role in modulating acyl-CoA pools.
    Ramsay RR; Arduini A
    Arch Biochem Biophys; 1993 May; 302(2):307-14. PubMed ID: 8489235
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Malonyl-CoA and the regulation of fatty acid oxidation in soleus muscle.
    Alam N; Saggerson ED
    Biochem J; 1998 Aug; 334 ( Pt 1)(Pt 1):233-41. PubMed ID: 9693125
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of pantethine and its metabolites on fatty acid oxidation in rat liver mitochondria.
    Morisaki N; Matsuoka N; Saito Y; Kumagai A
    Tohoku J Exp Med; 1983 Sep; 141(1):33-9. PubMed ID: 6636147
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Carnitine palmitoyltransferase: separation of enzyme activity and malonyl-CoA binding in rat liver mitochondria.
    Lund H; Woldegiorgis G
    Biochim Biophys Acta; 1986 Sep; 878(2):243-9. PubMed ID: 3756194
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Influence of valproic acid on hepatic carbohydrate and lipid metabolism.
    Becker CM; Harris RA
    Arch Biochem Biophys; 1983 Jun; 223(2):381-92. PubMed ID: 6407400
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sensitivity of carnitine acyltransferase I to malonly-CoA inhibition in isolated rat liver mitochondria is quantitatively related to hepatic malonyl-CoA concentration in vivo.
    Robinson IN; Zammit VA
    Biochem J; 1982 Jul; 206(1):177-9. PubMed ID: 7126192
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Altered interactions between lipogenesis and fatty acid oxidation in regenerating rat liver.
    Schofield PS; Sugden MC; Corstorphine CG; Zammit VA
    Biochem J; 1987 Jan; 241(2):469-74. PubMed ID: 3593202
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Acylcarnitine formation and fatty acid oxidation in hepatocytes from rats treated with tetradecylthioacetic acid (a 3-thia fatty acid).
    Skrede S; Bremer J
    Biochim Biophys Acta; 1993 Apr; 1167(2):189-96. PubMed ID: 8466948
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hepatic carnitine palmitoyltransferase-I has two independent inhibitory binding sites for regulation of fatty acid oxidation.
    Kashfi K; Mynatt RL; Cook GA
    Biochim Biophys Acta; 1994 May; 1212(2):245-52. PubMed ID: 8180250
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structural model of a malonyl-CoA-binding site of carnitine octanoyltransferase and carnitine palmitoyltransferase I: mutational analysis of a malonyl-CoA affinity domain.
    Morillas M; Gómez-Puertas P; Rubí B; Clotet J; Ariño J; Valencia A; Hegardt FG; Serra D; Asins G
    J Biol Chem; 2002 Mar; 277(13):11473-80. PubMed ID: 11790793
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chlorpromazine and carnitine-dependency of rat liver peroxisomal beta-oxidation of long-chain fatty acids.
    Vamecq J
    Biochem J; 1987 Feb; 241(3):783-91. PubMed ID: 3593222
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Binding of malonyl-CoA to isolated mitochondria. Evidence for high- and low-affinity sites in liver and heart and relationship to inhibition of carnitine palmitoyltransferase activity.
    Bird MI; Saggerson ED
    Biochem J; 1984 Sep; 222(3):639-47. PubMed ID: 6487267
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of membrane environment on the activity and inhibitability by malonyl-CoA of the carnitine acyltransferase of hepatic microsomal membranes.
    Broadway NM; Saggerson ED
    Biochem J; 1997 Mar; 322 ( Pt 2)(Pt 2):435-40. PubMed ID: 9065760
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Studies on the control of fatty acid oxidation in liver preparations from chick embryos.
    Koerker DJ; Fritz IB
    Can J Biochem; 1970 Apr; 48(4):418-24. PubMed ID: 5418963
    [No Abstract]   [Full Text] [Related]  

  • 80. Fatty acid uptake and metabolism to ketone bodies and triacyglycerol in rat and human hepatocyte cultures is dependent on chain-length and degree of saturation. Effects of carnitine and glucagon.
    Emmison N; Agius L
    FEBS Lett; 1988 Aug; 236(1):83-8. PubMed ID: 3402619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.