These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 4690260)
1. Management of grape pests in central California vineyards. 1. Cultural and chemical control of Platynota stultana on grapes. AliNiazee MT; Stafford EM J Econ Entomol; 1973 Feb; 66(1):154-7. PubMed ID: 4690260 [No Abstract] [Full Text] [Related]
2. Efficacy of Silwet L-77 against several arthropod pests of table grape. Tipping C; Bikoba V; Chander GJ; Mitcham EJ J Econ Entomol; 2003 Feb; 96(1):246-50. PubMed ID: 12650369 [TBL] [Abstract][Full Text] [Related]
3. Soil application of neonicotinoid insecticides for control of insect pests in wine grape vineyards. Van Timmeren S; Wise JC; Isaacs R Pest Manag Sci; 2012 Apr; 68(4):537-42. PubMed ID: 22290809 [TBL] [Abstract][Full Text] [Related]
4. Ethyl formate as a postharvest fumigant for selected pests of table grapes. Simpson T; Bikoba V; Tipping C; Mitcham EJ J Econ Entomol; 2007 Aug; 100(4):1084-90. PubMed ID: 17849855 [TBL] [Abstract][Full Text] [Related]
5. [RESULTS OF CONTROL OF BLOOD-SUCKING INSECTS BY EARLY SPRING TREATMENT OF RESERVOIRS]. KANTSUR MIa; ELIN IS; RUBINOVA ZI Voen Med Zh; 1964; 60():52-4. PubMed ID: 14296535 [No Abstract] [Full Text] [Related]
6. A review of the uses of the insecticide DDT in the control of insect pests affecting humans. BAILLIE JH Can J Public Health; 1946 May; 37():214-6. PubMed ID: 20983002 [No Abstract] [Full Text] [Related]
7. Chemical control of grape leafhoppers and Pacific spider mites on grapevines. AliNiazee MT; Frost MH; Stafford EM J Econ Entomol; 1971 Jun; 64(3):697-700. PubMed ID: 5105132 [No Abstract] [Full Text] [Related]
8. Brassolis sophorae and Castnia daedalus: chemical control of these major pests of coconut in Guyana. Rai BK J Econ Entomol; 1973 Feb; 66(1):177-80. PubMed ID: 4690264 [No Abstract] [Full Text] [Related]
9. Suppression of four hardwood defoliators by helicopter application of concentrate and dilute chemical and biological sprays. Wallner WE J Econ Entomol; 1971 Dec; 64(6):1487-90. PubMed ID: 20333846 [No Abstract] [Full Text] [Related]
10. Semiochemical Strategies for Tortricid Moth Control in Apple Orchards and Vineyards in Italy. Ioriatti C; Lucchi A J Chem Ecol; 2016 Jul; 42(7):571-83. PubMed ID: 27417503 [TBL] [Abstract][Full Text] [Related]
11. Review of Ecologically-Based Pest Management in California Vineyards. Wilson H; Daane KM Insects; 2017 Oct; 8(4):. PubMed ID: 29019946 [TBL] [Abstract][Full Text] [Related]
12. Reduced-risk insecticides for control of grape berry moth (Lepidoptera: Tortricidae) and conservation of natural enemies. Jenkins PE; Isaacs R J Econ Entomol; 2007 Jun; 100(3):855-65. PubMed ID: 17598548 [TBL] [Abstract][Full Text] [Related]
17. Comparison of insecticides for cotton insect control and the effect of copper on yields. GAINES JC J Econ Entomol; 1947 Jun; 40(3):434-6. PubMed ID: 20264522 [No Abstract] [Full Text] [Related]
18. Fungi and mycotoxins in vineyards and grape products. Hocking AD; Leong SL; Kazi BA; Emmett RW; Scott ES Int J Food Microbiol; 2007 Oct; 119(1-2):84-8. PubMed ID: 17765989 [TBL] [Abstract][Full Text] [Related]
19. Blueberry IPM: Past Successes and Future Challenges. Rodriguez-Saona C; Vincent C; Isaacs R Annu Rev Entomol; 2019 Jan; 64():95-114. PubMed ID: 30629894 [TBL] [Abstract][Full Text] [Related]