These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 469045)
1. The formation and structure of some proteose-peptone components. Andrews AT J Dairy Res; 1979 Apr; 46(2):215-8. PubMed ID: 469045 [TBL] [Abstract][Full Text] [Related]
2. The composition, structure and origin of proteose-peptone component 5 of bovine milk. Andrews AT Eur J Biochem; 1978 Sep; 90(1):59-65. PubMed ID: 710421 [TBL] [Abstract][Full Text] [Related]
3. Proteinases in normal bovine milk and their action on caseins. Andrews AT J Dairy Res; 1983 Feb; 50(1):45-55. PubMed ID: 6341422 [TBL] [Abstract][Full Text] [Related]
4. The composition, structure and origin of proteose-peptone component 8F of bovine milk. Andrews AT Eur J Biochem; 1978 Sep; 90(1):67-81. PubMed ID: 710422 [TBL] [Abstract][Full Text] [Related]
6. Proteolysis in samples of quarter milk with varying somatic cell counts. 2. Component PP3 and beta-casein-1P (f29-105 and f29-107) of the proteose-peptone fraction. Le Roux Y; Girardet JM; Humbert G; Laurent F; Linden G J Dairy Sci; 1995 Jun; 78(6):1298-305. PubMed ID: 7673518 [TBL] [Abstract][Full Text] [Related]
7. The localization and multimeric nature of component PP3 in bovine milk: purification and characterization of PP3 from caprine and ovine milks. Sørensen ES; Rasmussen LK; Møller L; Petersen TE J Dairy Sci; 1997 Dec; 80(12):3176-81. PubMed ID: 9436096 [TBL] [Abstract][Full Text] [Related]
8. Purification and characterization of three proteins isolated from the proteose peptone fraction of bovine milk. Sørensen ES; Petersen TE J Dairy Res; 1993 May; 60(2):189-97. PubMed ID: 8320368 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of lipolysis in bovine milk by proteose peptone. Anderson M J Dairy Res; 1981 Jun; 48(2):247-52. PubMed ID: 7298961 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous separation and quantitation of the major bovine whey proteins including proteose peptone and caseinomacropeptide by reversed-phase high-performance liquid chromatography on polystyrene-divinylbenzene. Elgar DF; Norris CS; Ayers JS; Pritchard M; Otter DE; Palmano KP J Chromatogr A; 2000 May; 878(2):183-96. PubMed ID: 10866065 [TBL] [Abstract][Full Text] [Related]
11. Proteose-peptone fraction of bovine milk: distribution in the protein system. Kolar CK; Brunner JR J Dairy Sci; 1969 Oct; 52(10):1541-6. PubMed ID: 5392647 [No Abstract] [Full Text] [Related]
12. Proteolysis and electrophoretic pattern of casein of some fermented milks. Hegazi FZ Nahrung; 1988; 32(6):539-43. PubMed ID: 3148111 [TBL] [Abstract][Full Text] [Related]
13. Phosphorylation, glycosylation and amino acid sequence of component PP3 from the proteose peptone fraction of bovine milk. Sørensen ES; Petersen TE J Dairy Res; 1993 Nov; 60(4):535-42. PubMed ID: 8294608 [TBL] [Abstract][Full Text] [Related]
14. Enterotoxin-binding glycoproteins in a proteose-peptone fraction of heated bovine milk. Shida K; Takamizawa K; Nagaoka M; Kushiro A; Osawa T; Tsuji T J Dairy Sci; 1994 Apr; 77(4):930-9. PubMed ID: 8201051 [TBL] [Abstract][Full Text] [Related]
15. The primary structure of caprine PP3: amino acid sequence, phosphorylation, and glycosylation of component PP3 from the proteose-peptone fraction of caprine milk. Lister IM; Rasmussen LK; Johnsen LB; Møller L; Petersen TE; Sørensen ES J Dairy Sci; 1998 Aug; 81(8):2111-5. PubMed ID: 9749374 [TBL] [Abstract][Full Text] [Related]
17. [The structure of caseins from cow milk]. Chernikov MP; Stan EY Prikl Biokhim Mikrobiol; 1975; 11(2):241-9. PubMed ID: 1208378 [TBL] [Abstract][Full Text] [Related]
18. Preparation and properties of beta-casein from buffalo's milk. el-Salam MH; el-Shibiny S J Dairy Res; 1975 Feb; 42(1):163-7. PubMed ID: 235578 [TBL] [Abstract][Full Text] [Related]
19. Identification of proteose-peptone component 5 as a plasmin-derived fragment of bovine beta-casein. Eigel WN Int J Biochem; 1981; 13(10):1081-6. PubMed ID: 6457763 [No Abstract] [Full Text] [Related]
20. PP3 forms stable tetrameric structures through hydrophobic interactions via the C-terminal amphipathic helix and undergoes reversible thermal dissociation and denaturation. Pedersen LR; Nielsen SB; Hansted JG; Petersen TE; Otzen DE; Sørensen ES FEBS J; 2012 Jan; 279(2):336-47. PubMed ID: 22099394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]