These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 4691158)

  • 1. Carbon fiber reinforced polyethylene for possible orthopedic uses.
    Sclippa E; Piekarski K
    J Biomed Mater Res; 1973 Jan; 7(1):59-70. PubMed ID: 4691158
    [No Abstract]   [Full Text] [Related]  

  • 2. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene.
    Connelly GM; Rimnac CM; Wright TM; Hertzberg RW; Manson JA
    J Orthop Res; 1984; 2(2):119-25. PubMed ID: 6491807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cross-sectional design on the modulus of elasticity and toughness of fiber-reinforced composite materials.
    Dyer SR; Lassila LV; Jokinen M; Vallittu PK
    J Prosthet Dent; 2005 Sep; 94(3):219-26. PubMed ID: 16126074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts.
    Soares CJ; Santana FR; Pereira JC; Araujo TS; Menezes MS
    J Prosthet Dent; 2008 Jun; 99(6):444-54. PubMed ID: 18514666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of triaxial braid denier on ribbon-based fiber reinforced dental composites.
    Karbhari VM; Wang Q
    Dent Mater; 2007 Aug; 23(8):969-76. PubMed ID: 17092553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene.
    Baker DA; Bellare A; Pruitt L
    J Biomed Mater Res A; 2003 Jul; 66(1):146-54. PubMed ID: 12833441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quartz and graphite filament reinforced polymer composites for orthopedic surgical application.
    Musikant S
    J Biomed Mater Res; 1971; 5(2):225-35. PubMed ID: 4324982
    [No Abstract]   [Full Text] [Related]  

  • 8. The flexural properties of fiber-reinforced composite with light-polymerized polymer matrix.
    Bae JM; Kim KN; Hattori M; Hasegawa K; Yoshinari M; Kawada E; Oda Y
    Int J Prosthodont; 2001; 14(1):33-9. PubMed ID: 11842902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of fiber type and wetting agent on the flexural properties of an indirect fiber reinforced composite.
    Ellakwa AE; Shortall AC; Marquis PM
    J Prosthet Dent; 2002 Nov; 88(5):485-90. PubMed ID: 12473997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites.
    Karbhari VM; Strassler H
    Dent Mater; 2007 Aug; 23(8):960-8. PubMed ID: 17084889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue response to carbon-reinforced polyethylene.
    Groth HE; Shilling JM
    J Orthop Res; 1983; 1(2):129-35. PubMed ID: 6387073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technique for generating submicrometer ultra high molecular weight polyethylene particles.
    Shanbhag AS; Hasselman CT; Rubash HE
    J Orthop Res; 1996 Nov; 14(6):1000-4. PubMed ID: 8982145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of veneering composite composition on the efficacy of fiber-reinforced restorations (FRR).
    Ellakwa A; Shortall A; Shehata M; Marquis P
    Oper Dent; 2001; 26(5):467-75. PubMed ID: 11551011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon fibre-based harness for artificial arms.
    Ring ND; Benford JM
    Biomed Eng; 1971 Jan; 6(1):17-21. PubMed ID: 5553993
    [No Abstract]   [Full Text] [Related]  

  • 15. [Experiences with the applicability of polyethylene in orthopedic practice].
    Jungmichel D; Fritsch J; Wolf P
    Beitr Orthop Traumatol; 1971; 18(2):80-1. PubMed ID: 5575606
    [No Abstract]   [Full Text] [Related]  

  • 16. Compressive stress relaxation behavior of irradiated ultra-high molecular weight polyethylene at 37 degrees C.
    Waldman SD; Bryant JT
    J Appl Biomater; 1994; 5(4):333-8. PubMed ID: 8580540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing and mechanical properties of HA/UHMWPE nanocomposites.
    Fang L; Leng Y; Gao P
    Biomaterials; 2006 Jul; 27(20):3701-7. PubMed ID: 16564570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of carbon fiber reinforcement on contact area, contact pressure, and time-dependent deformation in polyethylene tibial components.
    Wright TM; Fukubayashi T; Burstein AH
    J Biomed Mater Res; 1981 Sep; 15(5):719-30. PubMed ID: 12659137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of high molecular weight polyethylenes using high temperature asymmetrical flow field-flow fractionation with on-line infrared, light scattering, and viscometry detection.
    Mes EP; de Jonge H; Klein T; Welz RR; Gillespie DT
    J Chromatogr A; 2007 Jun; 1154(1-2):319-30. PubMed ID: 17442326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological characteristics of tendon cells cultured on synthetic fibers.
    Ricci JL; Gona AG; Alexander H; Parsons JR
    J Biomed Mater Res; 1984; 18(9):1073-87. PubMed ID: 6242476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.