These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 4691635)

  • 1. Calculation of the absorbed dose and dose equivalent from neutrons and protons in the energy range from 3.5 GeV to 1.0 TeV.
    Armstrong TW; Chandler KC
    Health Phys; 1973 Mar; 24(3):227-86. PubMed ID: 4691635
    [No Abstract]   [Full Text] [Related]  

  • 2. A simple procedure for the estimation of neutron skyshine from proton accelerators.
    Stevenson GR; Thomas RH
    Health Phys; 1984 Jan; 46(1):115-22. PubMed ID: 6319329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computed dose distributions across air-tissue, polythene-tissue, and graphite-tissue interfaces for 14-MeV neutrons.
    Bhatia DP; Nagarajan PS
    Radiat Res; 1977 Feb; 69(2):197-209. PubMed ID: 840998
    [No Abstract]   [Full Text] [Related]  

  • 4. [Calculation of ionizing radiation along the flight paths of high-altitude planes].
    Barannikov IuI; Barsukov OA; Gavrilov PF
    Kosm Biol Aviakosm Med; 1987; 21(2):69-73. PubMed ID: 3586591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluence-to-dose conversion coefficients for neutrons and protons calculated using the PHITS code and ICRP/ICRU adult reference computational phantoms.
    Sato T; Endo A; Zankl M; Petoussi-Henss N; Niita K
    Phys Med Biol; 2009 Apr; 54(7):1997-2014. PubMed ID: 19265210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RBE-dose relations for neutrons and pions.
    Katz R; Sharma SC
    Phys Med Biol; 1975 May; 20(3):410-9. PubMed ID: 1187765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of trans-stilbene crystal to measure the dose equivalent in a mixed -n field.
    Bardina R; Ladu M; Pelliccioni M; Roccella M
    Health Phys; 1971 Aug; 21(2):273-80. PubMed ID: 5094196
    [No Abstract]   [Full Text] [Related]  

  • 8. Calculation of radiation dose due to protons and neutrons with energies from 0.4 to 2.4 GeV.
    Wright HA; Anderson VE; Turner JE; Neufeld J; Snyder WS
    Health Phys; 1969 Jan; 16(1):13-31. PubMed ID: 5766054
    [No Abstract]   [Full Text] [Related]  

  • 9. Neutron induced recoil protons of restricted energy and range and biological effectiveness.
    Geard CR
    Health Phys; 1996 Jun; 70(6):804-11. PubMed ID: 8635904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation measurements in a labyrinth penetration at a high-energy proton accelerator.
    Cossairt JD; Couch JG; Elwyn AJ; Freeman WS
    Health Phys; 1985 Nov; 49(5):907-17. PubMed ID: 2999036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An image-based skeletal model for the ICRP reference adult male-specific absorbed fractions for neutron-generated recoil protons.
    Jokisch DW; Rajon DA; Bahadori AA; Bolch WE
    Phys Med Biol; 2011 Nov; 56(21):6857-72. PubMed ID: 21983482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (D, D) and (D, T) neutron depth dose measurements in a tissue-equivalent phantom.
    Lawson RC; Clare DM; Watt DE
    Phys Med Biol; 1967 Apr; 12(2):201-15. PubMed ID: 6033358
    [No Abstract]   [Full Text] [Related]  

  • 13. Extended conversion coefficients for use in radiation protection of the embryo and fetus against external neutrons from 10 MeV to 100 GeV.
    Chen J
    Health Phys; 2006 Mar; 90(3):223-31. PubMed ID: 16505619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of (41)Ar production in 0.1-1.1.0-GeV proton accelerator vaults using FLUKA Monte Carlo code.
    Biju K; Sunil C; Sarkar PK
    Radiat Prot Dosimetry; 2013 Dec; 157(3):437-41. PubMed ID: 23754833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-nucleon target model applied to penetration and dose calculations for 200 and 400 McV protons and neutrons.
    Wright HA; Turner JE
    Health Phys; 1970 Jun; 18(6):711-20. PubMed ID: 5513264
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions.
    Tessa CL; Berger T; Kaderka R; Schardt D; Burmeister S; Labrenz J; Reitz G; Durante M
    Phys Med Biol; 2014 Apr; 59(8):2111-25. PubMed ID: 24694920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimates of radiation doses in space on the basis of current data.
    Foelsche T
    Life Sci Space Res; 1963; 1():48-94. PubMed ID: 12056428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation dose from neutrons and protons in the energy range from 400 MeV to 2 GeV.
    Neufeld J; Snyder WS; Turner JE; Wright H; Wheatley BM; Wyckoff HO
    Health Phys; 1969 Sep; 17(3):449-57. PubMed ID: 5798926
    [No Abstract]   [Full Text] [Related]  

  • 19. Calculation of dose contributions of electron and charged heavy particles inside phantoms irradiated by monoenergetic neutron.
    Satoh D; Takahashi F; Endo A; Ohmachi Y; Miyahara N
    J Radiat Res; 2008 Sep; 49(5):503-8. PubMed ID: 18580044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutron dose equivalent outside the lateral shielding of an electron linear accelerator operating at 0.48-2.15 GeV.
    Hirayama H; Ban S
    Health Phys; 1989 Jun; 56(6):947-52. PubMed ID: 2722519
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.