These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 4693482)

  • 1. The participation of a tryptophan residue in the binding of ferric iron to pyrocatechase.
    Nagami K
    Biochem Biophys Res Commun; 1973 Mar; 51(2):364-9. PubMed ID: 4693482
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on the active site of Brevibacterium pyrocatechase.
    Nagami K; Seno S
    J Biochem; 1974 Feb; 75(2):389-98. PubMed ID: 4837448
    [No Abstract]   [Full Text] [Related]  

  • 3. The participation of a sulfhydryl group in the binding of iron to pyrocatechase.
    Nagami K
    Biochem Biophys Res Commun; 1972 May; 47(4):803-7. PubMed ID: 5026296
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on oxygenases. I. Comparative studies on 3,4-dihydroxyphenylacetate-2,3-oxygenase and pyrocatechase by electron spin resonance spectroscopy.
    Kita H; Miyake Y; Kamimoto M; Seno S; Yamano T
    J Biochem; 1969 Jul; 66(1):45-50. PubMed ID: 4309720
    [No Abstract]   [Full Text] [Related]  

  • 5. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad.
    Dorn E; Knackmuss HJ
    Biochem J; 1978 Jul; 174(1):73-84. PubMed ID: 697765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol.
    Dorn E; Knackmuss HJ
    Biochem J; 1978 Jul; 174(1):85-94. PubMed ID: 697766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. METAL-CATALYZED OXIDATION OF 3,5-DI-T-BUTYL PYROCATECHOL, AND ITS SIGNIFICANCE IN THE MECHANISM OF PYROCATECHASE ACTION.
    GRINSTEAD RR
    Biochemistry; 1964 Sep; 3():1308-14. PubMed ID: 14229674
    [No Abstract]   [Full Text] [Related]  

  • 8. CHARACTERISTICS OF CATECHOL OXYGENASE FROM BREVIBACTERIUM FUSCUM.
    NAKAGAWA H; INOUE H; TAKEDA Y
    J Biochem; 1963 Jul; 54():65-74. PubMed ID: 14056355
    [No Abstract]   [Full Text] [Related]  

  • 9. Monitoring the iron status of the ferroxidase center of Escherichia coli bacterioferritin using fluorescence spectroscopy.
    Lawson TL; Crow A; Lewin A; Yasmin S; Moore GR; Le Brun NE
    Biochemistry; 2009 Sep; 48(38):9031-9. PubMed ID: 19705876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OBSERVATIONS OF THE ESTIMATION OF SERUM CHOLESTEROL USING THE FERRIC-CHLORIDE REACTION.
    NAIR SK; VENKATARAMAN A
    Indian J Med Res; 1964 Apr; 52():381-91. PubMed ID: 14166481
    [No Abstract]   [Full Text] [Related]  

  • 11. A screening method for enteric organisms, using a ferric chloride test.
    FALKOW S
    Tech Bull Regist Med Technol; 1957 Jun; 27(6):131-4. PubMed ID: 13486490
    [No Abstract]   [Full Text] [Related]  

  • 12. Participation of the lone tryptophan residue of rat alpha-foetoprotein in its drug-binding sites. Comparison with rat serum albumin.
    Hervé F; Martin MT; Rajkowski K; Dessen P; Cittanova N
    Biochem J; 1987 May; 244(1):81-5. PubMed ID: 2444212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, overexpression, and mutagenesis of the gene for homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum.
    Wang YZ; Lipscomb JD
    Protein Expr Purif; 1997 Jun; 10(1):1-9. PubMed ID: 9179284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of Hg (II) by ferric hydroxide.
    Lockwood RA; Chen KY
    Environ Lett; 1974; 6(3):151-66. PubMed ID: 4827143
    [No Abstract]   [Full Text] [Related]  

  • 15. Steady-state and time-resolved fluorescence studies on wild type and mutant chromatium vinosum high potential iron proteins: holo- and apo-forms.
    Sau AK; Chen CA; Cowan JA; Mazumdar S; Mitra S
    Biophys J; 2001 Oct; 81(4):2320-30. PubMed ID: 11566801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic studies on the metabolism of the tetrahydrofurfuryl mercaptan moiety of thiamine tetrahydrofurfuryl disulfide. II. Sulfide and sulfoxide oxygenases in microsomes.
    Fujita T; Suzuoki Z; Kozuka S; Oae S
    J Biochem; 1973 Oct; 74(4):723-32. PubMed ID: 4148713
    [No Abstract]   [Full Text] [Related]  

  • 17. Spectral and metal-binding properties of three single-point tryptophan mutants of the human transferrin N-lobe.
    He QY; Mason AB; Lyons BA; Tam BM; Nguyen V; MacGillivray RT; Woodworth RC
    Biochem J; 2001 Mar; 354(Pt 2):423-9. PubMed ID: 11171122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-turnover kinetics of homoprotocatechuate 2,3-dioxygenase.
    Groce SL; Miller-Rodeberg MA; Lipscomb JD
    Biochemistry; 2004 Dec; 43(48):15141-53. PubMed ID: 15568806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic fluorescence reports a global conformational change in the N-lobe of human serum transferrin following iron release.
    James NG; Berger CL; Byrne SL; Smith VC; MacGillivray RT; Mason AB
    Biochemistry; 2007 Sep; 46(37):10603-11. PubMed ID: 17711300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymes of the tryptophan synthetic pathway in Brevibacterium flavum.
    Sugimoto S; Shiio I
    J Biochem; 1977 Apr; 81(4):823-33. PubMed ID: 881418
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.