These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 4693674)

  • 61. Modulation by intracellular ATP and cyclic AMP of the slow inward current in isolated single ventricular cells of the guinea-pig.
    Irisawa H; Kokubun S
    J Physiol; 1983 May; 338():321-37. PubMed ID: 6308246
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Glycolysis and oxidative phosphorylation during activation of the sodium pump in the taenia from guinea-pig caecum.
    Takai A; Tomita T
    J Physiol; 1986 Dec; 381():65-75. PubMed ID: 2442356
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Contributions of the sodium pump and ionic gradients to the membrane potential of a molluscan neurone.
    Gorman AL; Marmor MF
    J Physiol; 1970 Nov; 210(4):897-917. PubMed ID: 5501490
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Insulin action on cardiac glucose transport. Studies on the role of the sodium pump.
    Eckel J; Reinauer H
    Adv Myocardiol; 1985; 6():105-11. PubMed ID: 2581294
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cellular potentials, electrogenic sodium pumping and sensitivity in guinea-pig atria.
    Schulz JC; Fleming WW; Westfall DP; Millecchia R
    J Pharmacol Exp Ther; 1984 Oct; 231(1):181-8. PubMed ID: 6491974
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of isoprenaline on contractions of directly stimulated fast and slow skeletal muscles of the guinea-pig.
    Tashiro N
    Br J Pharmacol; 1973 May; 48(1):121-31. PubMed ID: 4724184
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sodium-dependent membrane current induced by carbachol in single guinea-pig ventricular myocytes.
    Matsumoto K; Pappano AJ
    J Physiol; 1989 Aug; 415():487-502. PubMed ID: 2561791
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Intracellular K+ and Na+ activities under hypoxia, acidosis, and no glucose in dog hearts.
    Nakaya H; Kimura S; Kanno M
    Am J Physiol; 1985 Dec; 249(6 Pt 2):H1078-85. PubMed ID: 3000193
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Interdependence of ion transport and the action of quabain in heart muscle.
    Bentfeld M; Lüllmann H; Peters T; Proppe D
    Br J Pharmacol; 1977 Sep; 61(1):19-27. PubMed ID: 912208
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Glucose and the survival and recovery of the anoxic myocardium.
    Hearse DJ; Chain EB
    Biochem J; 1972 Apr; 127(2):20P. PubMed ID: 5076649
    [No Abstract]   [Full Text] [Related]  

  • 71. Tension maintenance, calcium content and energy production of the taenia of the guinea-pig caecum under hypoxia.
    Ishida Y; Takagi K; Urakawa N
    J Physiol; 1984 Feb; 347():149-59. PubMed ID: 6707953
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reducing the late sodium current improves cardiac function during sodium pump inhibition by ouabain.
    Hoyer K; Song Y; Wang D; Phan D; Balschi J; Ingwall JS; Belardinelli L; Shryock JC
    J Pharmacol Exp Ther; 2011 May; 337(2):513-23. PubMed ID: 21325441
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A comparison of the effect of temperature, metabolic inhibitors and of ouabain on the electrogenic componen of the sodium pump in mammalian non-myelinated nerve fibres.
    den Hertog A; Ritchie JM
    J Physiol; 1969 Oct; 204(3):523-38. PubMed ID: 5824103
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Contribution of an electrogenic sodium pump to membrane potential in mammalian skeletal muscle fibres.
    Akaike N
    J Physiol; 1975 Mar; 245(3):499-520. PubMed ID: 1142216
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A contribution of an electrogenic Na+ pump to membrane potential in Aplysia neurons.
    Carpenter DO; Alving BO
    J Gen Physiol; 1968 Jul; 52(1):1-21. PubMed ID: 5742832
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effect of hypoxia on ouabain inhibition of sodium pump in newborn rabbit myocardium.
    Shimizu T; Nakanishi T; Uemura S; Jarmakani JM
    Am J Physiol; 1983 Jun; 244(6):H756-62. PubMed ID: 6859278
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart.
    Sakmann B; Trube G
    J Physiol; 1984 Feb; 347():641-57. PubMed ID: 6323703
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The effects of ryanodine, EGTA and low-sodium on action potentials in rat and guinea-pig ventricular myocytes: evidence for two inward currents during the plateau.
    Mitchell MR; Powell T; Terrar DA; Twist VW
    Br J Pharmacol; 1984 Mar; 81(3):543-50. PubMed ID: 6320942
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The relation between the action potential duration, the increase in resting tension, and ATP content during metabolic inhibition in guinea pig ventricular muscles.
    Hayashi H; Terada H; McDonald TF
    Mol Cell Biochem; 1999 Apr; 194(1-2):193-7. PubMed ID: 10391140
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Some electrophysiological consequences of electrogenic sodium and potassium transport in cardiac muscle: a theoretical study.
    Johnson EA; Chapman JB; Kootsey JM
    J Theor Biol; 1980 Dec; 87(4):737-56. PubMed ID: 7253675
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.