These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 4693869)
41. The actions of parathyroid hormone on bone: relation to bone remodeling and turnover, calcium homeostasis, and metabolic bone disease. Part I of IV parts: mechanisms of calcium transfer between blood and bone and their cellular basis: morphological and kinetic approaches to bone turnover. Parfitt AM Metabolism; 1976 Jul; 25(7):809-44. PubMed ID: 781470 [TBL] [Abstract][Full Text] [Related]
42. Haversian remodeling in guided bone regeneration with calcium alginate film in circular bone defect model of rabbit. He H; Huang J; Shi J; Ping F; Chen G; Dong Y Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(5):533-42. PubMed ID: 17922317 [TBL] [Abstract][Full Text] [Related]
43. The contribution of bone histology to understanding the pathogenesis and improving the management of osteoporosis. Parfitt AM Clin Invest Med; 1982; 5(2-3):163-7. PubMed ID: 7116722 [No Abstract] [Full Text] [Related]
44. Stress generated potentials in bone: relationship to piezoelectricity of collagen. Korostoff E J Biomech; 1977; 10(1):41-4. PubMed ID: 845176 [No Abstract] [Full Text] [Related]
45. Ceramic models for piezoelectricity in dry bone. Johnson MW; Williams WS; Gross D J Biomech; 1980; 13(7):565-73. PubMed ID: 7400185 [No Abstract] [Full Text] [Related]
46. Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis. Prendergast PJ; Huiskes R J Biomech Eng; 1996 May; 118(2):240-6. PubMed ID: 8738790 [TBL] [Abstract][Full Text] [Related]
47. Bone remodeling is reduced in high stress regions of the cercopithecoid mandible. Lad SE; Daegling DJ; McGraw WS Am J Phys Anthropol; 2016 Nov; 161(3):426-435. PubMed ID: 27348341 [TBL] [Abstract][Full Text] [Related]
48. Black bears with longer disuse (hibernation) periods have lower femoral osteon population density and greater mineralization and intracortical porosity. Wojda SJ; Weyland DR; Gray SK; McGee-Lawrence ME; Drummer TD; Donahue SW Anat Rec (Hoboken); 2013 Aug; 296(8):1148-53. PubMed ID: 23728917 [TBL] [Abstract][Full Text] [Related]
49. Estimates of the peak pressures in bone pore water. Zhang D; Weinbaum S; Cowin SC J Biomech Eng; 1998 Dec; 120(6):697-703. PubMed ID: 10412451 [TBL] [Abstract][Full Text] [Related]
50. The role of gradient effects in the piezoelectricity of bone. Lakes R IEEE Trans Biomed Eng; 1980 May; 27(5):282-3. PubMed ID: 7380447 [No Abstract] [Full Text] [Related]
51. Comments on 'compact bone: numerical simulation of mechanical characteristics'. Zhang N; Fan XJ J Biomech; 1996 Dec; 29(12):1673-8. PubMed ID: 8945671 [No Abstract] [Full Text] [Related]
52. Intracortical remodeling during human bone development--a histomorphometric study. Rauch F; Travers R; Glorieux FH Bone; 2007 Feb; 40(2):274-80. PubMed ID: 17049943 [TBL] [Abstract][Full Text] [Related]
53. Mechanical loading, estrogen deficiency, and the coupling of bone formation to bone resorption. Rodan GA J Bone Miner Res; 1991 Jun; 6(6):527-30. PubMed ID: 1887815 [No Abstract] [Full Text] [Related]
54. Piezoelectricity in tendon and bone. Williams WS; Breger L J Biomech; 1975; 8(6):407-13. PubMed ID: 1206043 [No Abstract] [Full Text] [Related]
55. The effect of chronic administration of trisodium nitrilotriacetate (Na3NTA) on the haversian remodelling system in dogs. Anderson C; Danylchuk KD J Environ Pathol Toxicol; 1979 Dec; 3(1-2):413-20. PubMed ID: 547022 [TBL] [Abstract][Full Text] [Related]
56. Trabecular bone remodeling around smooth and porous implants in an equine patellar model. Cheal EJ; Snyder BD; Nunamaker DM; Hayes WC J Biomech; 1987; 20(11-12):1121-34. PubMed ID: 3429458 [TBL] [Abstract][Full Text] [Related]
57. Structural changes with aging in cortical bone of the human tibia. Nyssen-Behets C; Duchesne PY; Dhem A Gerontology; 1997; 43(6):316-25. PubMed ID: 9386983 [TBL] [Abstract][Full Text] [Related]
58. Microstructural mechanical study of a transverse osteon under compressive loading: The role of fiber reinforcement and explanation of some geometrical and mechanical microscopic properties. De Micheli PO; Witzel U J Biomech; 2011 May; 44(8):1588-92. PubMed ID: 21397233 [TBL] [Abstract][Full Text] [Related]
59. Effects of the microcrack shape, size and direction on the poroelastic behaviors of a single osteon: a finite element study. Cen HP; Wu XG; Yu WL; Liu QZ; Jia YM Acta Bioeng Biomech; 2016; 18(1):3-10. PubMed ID: 27149885 [TBL] [Abstract][Full Text] [Related]
60. The cellular basis of bone turnover and bone loss: a rebuttal of the osteocytic resorption--bone flow theory. Parfitt AM Clin Orthop Relat Res; 1977; (127):236-47. PubMed ID: 912987 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]