These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 469415)

  • 41. Reaction-diffusion systems and external morphogen gradients: the two-dimensional case, with an application to skeletal pattern formation.
    Glimm T; Zhang J; Shen YQ; Newman SA
    Bull Math Biol; 2012 Mar; 74(3):666-87. PubMed ID: 21989567
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatial and spatio-temporal patterns in a cell-haptotaxis model.
    Maini PK
    J Math Biol; 1989; 27(5):507-22. PubMed ID: 2794801
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bifurcation and optimal harvesting of a diffusive predator-prey system with delays and interval biological parameters.
    Zhang X; Zhao H
    J Theor Biol; 2014 Dec; 363():390-403. PubMed ID: 25172773
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemotaxis, signal relaying and aggregation morphology.
    Nanjundiah V
    J Theor Biol; 1973 Nov; 42(1):63-105. PubMed ID: 4357384
    [No Abstract]   [Full Text] [Related]  

  • 45. On the heterogeneity of reaction-diffusion generated pattern.
    Berding C
    Bull Math Biol; 1987; 49(2):233-52. PubMed ID: 3607341
    [No Abstract]   [Full Text] [Related]  

  • 46. Modeling morphogen gradient formation from arbitrary realistically shaped sources.
    Dalessi S; Neves A; Bergmann S
    J Theor Biol; 2012 Feb; 294():130-8. PubMed ID: 22094361
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Equilibrium points for nonlinear compartmental models.
    Anderson DH; Roller T
    Math Biosci; 1991 Mar; 103(2):159-201. PubMed ID: 1804445
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A reaction-diffusion theory of morphogenesis with inherent pattern invariance under scale variations.
    Papageorgiou S; Venieratos D
    J Theor Biol; 1983 Jan; 100(1):57-79. PubMed ID: 6834861
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microscopic approach to nonlinear reaction-diffusion: the case of morphogen gradient formation.
    Boon JP; Lutsko JF; Lutsko C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021126. PubMed ID: 22463171
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mathematical analysis and numerical simulation of a model of morphogenesis.
    Muñoz AI; Tello JI
    Math Biosci Eng; 2011 Oct; 8(4):1035-59. PubMed ID: 21936599
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Convergence to spatial-temporal clines in the Fisher equation with time-periodic fitnesses.
    Hess P; Weinberger H
    J Math Biol; 1990; 28(1):83-98. PubMed ID: 2307914
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of reaction-diffusion models to cell patterning in Xenopus retina. Initiation of patterns and their biological stability.
    Shoaf SA; Conway K; Hunt RK
    J Theor Biol; 1984 Aug; 109(3):299-329. PubMed ID: 6471873
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An exact analytical solution of a three-component model for competitive coexistence.
    Schat CL; Kuperman MN; Wio HS
    Math Biosci; 1996 Jan; 131(2):205-18. PubMed ID: 8589545
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computing steady-state metal flux at microorganism and bioanalogical sensor interfaces in multiligand systems. A reaction layer approximation and its comparison with the rigorous solution.
    Buffle J; Startchev K; Galceran J
    Phys Chem Chem Phys; 2007 Jun; 9(22):2844-55. PubMed ID: 17538729
    [TBL] [Abstract][Full Text] [Related]  

  • 55. What is the status of reaction-diffusion theory thirty-four years after turing?
    Harrison LG
    J Theor Biol; 1987 Apr; 125(4):369-84. PubMed ID: 3309478
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pattern regulation in reaction-diffusion systems--the problem of size invariance.
    Babloyantz A; Bellemans A
    Bull Math Biol; 1985; 47(4):475-87. PubMed ID: 4084686
    [No Abstract]   [Full Text] [Related]  

  • 57. The role of a reaction--diffusion system in the formation of hair fibres.
    Nagorcka BN; Mooney JR
    J Theor Biol; 1982 Oct; 98(4):575-607. PubMed ID: 7154690
    [No Abstract]   [Full Text] [Related]  

  • 58. Morphogen gradient formation in a complex environment: an anomalous diffusion model.
    Hornung G; Berkowitz B; Barkai N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041916. PubMed ID: 16383429
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Theory of dissipative structures arising in the Turing-Prigozhin model].
    Markman GS; Urintsev AL
    Biofizika; 1980; 25(1):148-52. PubMed ID: 7370315
    [No Abstract]   [Full Text] [Related]  

  • 60. Superposition of modes in a caricature of a model for morphogenesis.
    Maini PK
    J Math Biol; 1990; 28(3):307-15. PubMed ID: 2332707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.