BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 469543)

  • 1. Effects of depolarization on cofactor regulation of glutamic acid decarboxylase in substantia nigra synaptosomes.
    Miller LP; Walters JR
    J Neurochem; 1979 Aug; 33(2):533-9. PubMed ID: 469543
    [No Abstract]   [Full Text] [Related]  

  • 2. A striatal source of glutamic acid decarboxylase activity in the substantia nigra.
    Nagy JI; Fibiger HC
    Brain Res; 1980 Apr; 187(1):237-42. PubMed ID: 7357470
    [No Abstract]   [Full Text] [Related]  

  • 3. Glutamic acid decarboxylase activity in striatal slices: persistent increase following depolarization.
    Gold BI; Simon JR; Roth RH
    Life Sci; 1978 Jan; 22(2):187-93. PubMed ID: 628309
    [No Abstract]   [Full Text] [Related]  

  • 4. Activation by adenosine-5'-triphosphate of glutamic decarboxylase from a subcellular fraction of mouse brain.
    Tunnicliff G; Ngo TT
    Can J Physiol Pharmacol; 1979 Aug; 57(8):873-7. PubMed ID: 497901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of acute and continuous morphine administration on the affinity of glutamic acid decarboxylase for pyridoxal 5'-phosphate.
    Ho IK; Gilliland T
    Biochem Pharmacol; 1979; 28(3):355-60. PubMed ID: 426851
    [No Abstract]   [Full Text] [Related]  

  • 6. Regional differences in cofactor saturation of glutamate decarboxylase (GAD) in discrete brain nuclei of the rat. Effect of repeated administration of haloperidol on GAD activity in the substantia nigra.
    Itoh M; Uchimura H
    Neurochem Res; 1981 Dec; 6(12):1283-9. PubMed ID: 7339506
    [No Abstract]   [Full Text] [Related]  

  • 7. Tetrodotoxin inhibition in vitro of protoveratrine A-activated glutamate decarboxylase in synaptosomes.
    Huger FP; Gold BI
    Biochem Pharmacol; 1980 Nov; 29(21):3034-6. PubMed ID: 7458956
    [No Abstract]   [Full Text] [Related]  

  • 8. Time course and localization of the effects of estrogen on glutamic acid decarboxylase activity.
    McGinnis MY; Gordon JH; Gorski RA
    J Neurochem; 1980 Apr; 34(4):785-92. PubMed ID: 7359131
    [No Abstract]   [Full Text] [Related]  

  • 9. Kinetics of brain glutamate decarboxylase. Interactions with glutamate, pyridoxal 5'-phosphate and glutamate-pyridoxal 5'-phosphate Schiff base.
    Bayón A; Possani LD; Tapia M; Tapia R
    J Neurochem; 1977 Sep; 29(3):519-25. PubMed ID: 894307
    [No Abstract]   [Full Text] [Related]  

  • 10. Increased striatal glutamate decarboxylase after lesions of the nigrostriatal pathway.
    Vincent SR; Nagy JI; Fibiger HC
    Brain Res; 1978 Mar; 143(1):168-73. PubMed ID: 24494
    [No Abstract]   [Full Text] [Related]  

  • 11. Post-mortem changes implicate adenine nucleotides and pyridoxal-5' -phosphate in regulation of brain glutamate decarboxylase.
    Miller LP; Walters JR; Martin DL
    Nature; 1977 Apr; 266(5605):847-8. PubMed ID: 865606
    [No Abstract]   [Full Text] [Related]  

  • 12. Chronic hypoxia in rats: alterations of striato-nigral angiotensin converting enzyme, GABA, and glutamic acid decarboxylase.
    Arregui A; Barer GR
    J Neurochem; 1980 Mar; 34(3):740-3. PubMed ID: 6243699
    [No Abstract]   [Full Text] [Related]  

  • 13. Sulpiride effects on nigral and striatal glutamic acid decarboxylase activity: a possible involvement of prolactin.
    Nicoletti F; Canonico PL; Patti F; Rampello L; Condorelli DF; giammona G; Di Giorgio RM; Scapagnini U
    Eur J Pharmacol; 1982 Jan; 77(2-3):131-5. PubMed ID: 7060633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on glutamic acid decarboxylase from Listeria monocytogenes.
    Shah MS; Siddique IH; Dalvi RR
    Can J Comp Med; 1981 Apr; 45(2):196-8. PubMed ID: 6790145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the regulation of GABA synthesis: substrate-promoted dissociation of pyridoxal-5'-phosphate from GAD.
    Miller LP; Martin DL; Mazumder A; Walters JR
    J Neurochem; 1978 Feb; 30(2):361-9. PubMed ID: 24086
    [No Abstract]   [Full Text] [Related]  

  • 16. Localization of glutamate decarboxylase, choline acetyltransferase, and DOPA decarboxylase in mesolimbic structures.
    Fonnum F; Iversen E; Walaas I
    Adv Biochem Psychopharmacol; 1977; 16():417-21. PubMed ID: 302083
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of olfactory bulbectomy and estrogen on tyrosine hydroxylase and glutamic acid decarboxylase in the nigrostriatal and mesolimbic dopamine systems of adult female rats.
    Tyler JL; Gordon JH; Gorski RA
    Pharmacol Biochem Behav; 1979 Nov; 11(5):549-52. PubMed ID: 43516
    [No Abstract]   [Full Text] [Related]  

  • 18. [Increase in glutamate decarboxylase activity in the synaptosomes after treatment with tetanus toxin].
    Kryzhanovskiĭ GN; Lutsenko VK; Sakharova OP; Rebrov IG; Lutsenko NG
    Biull Eksp Biol Med; 1982 Nov; 94(11):34-6. PubMed ID: 7150734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of choline acetyltransferase and glutamate decarboxylase within the substantia nigra and in other brain regions from control and Parkinsonian patients.
    Lloyd KG; Möhler H; Heitz P; Bartholini G
    J Neurochem; 1975 Dec; 25(6):789-95. PubMed ID: 1206397
    [No Abstract]   [Full Text] [Related]  

  • 20. Glutamic acid decarboxylase (GAD) activity in the rat substantia nigra after discrete bilateral kainic acid-induced lesions of the caudate-putamen and globus pallidus: correlation with locomotor activity.
    Al-Shabibi UM; Davies JA
    Brain Res; 1981 Jun; 213(2):460-6. PubMed ID: 7248771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.