These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 4697394)

  • 1. Competition between the elongation factors 1 and 2, and phenylalanyl transfer ribonucleic acid for the ribosomal binding sites in a polypeptide-synthesizing system from brain.
    Richter D
    J Biol Chem; 1973 Apr; 248(8):2853-7. PubMed ID: 4697394
    [No Abstract]   [Full Text] [Related]  

  • 2. Binding of the elongation factors EF 1 and EF 2 to 80 S ribosomes in a cell-free system from porcine brain of the hypothalamic region.
    Richter D
    Methods Enzymol; 1974; 30():238-45. PubMed ID: 4604150
    [No Abstract]   [Full Text] [Related]  

  • 3. Irreversible inhibition of the interaction between elongation factor Tu and phenylalanyl transfer ribonucleic acid by L-1-tosylamido-2-phenylethyl chloromethy ketone.
    Richman N; Bodley JW
    J Biol Chem; 1973 Jan; 248(1):381-3. PubMed ID: 4571228
    [No Abstract]   [Full Text] [Related]  

  • 4. Inhibition by aminoacyl transfer ribonucleic acid of elongation factor G-dependent binding of guanosine nucleotide to ribosomes.
    Modolell J; Vazquez D
    J Biol Chem; 1973 Jan; 248(2):488-93. PubMed ID: 4567784
    [No Abstract]   [Full Text] [Related]  

  • 5. Polyphenylalanine synthesis and binding of phenylalanyl transfer ribonucleic acid by ribosomes from muscle of normal and diabetic rats.
    Castles JJ; Rolleston FS; Wool IG
    J Biol Chem; 1971 Mar; 246(6):1799-805. PubMed ID: 5547705
    [No Abstract]   [Full Text] [Related]  

  • 6. The effect of an antiviral peptide on the ribosomal reactions of the peptide elongation enzymes, EF-I and EF-II.
    Obrig TG; Irvin JD; Hardesty B
    Arch Biochem Biophys; 1973 Apr; 155(2):278-89. PubMed ID: 4705425
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of elongation factors and the effect of aurintricarboxylic acid on the synthesis of polyphenylalanine.
    Smith KE; Hirsch CA; Henshaw EC
    J Biol Chem; 1973 Jan; 248(1):122-30. PubMed ID: 4692826
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of guanylyl-5'-methylene diphosphonate on binding of aminoacyl-transfer ribonucleic acid to ribosomes.
    Shorey RL; Ravel JM; Shive W
    Arch Biochem Biophys; 1971 Sep; 146(1):110-7. PubMed ID: 4947260
    [No Abstract]   [Full Text] [Related]  

  • 9. Purification and properties of polypeptide chain elongation factor-1 beta gamma from pig liver.
    Motoyoshi K; Iwasaki K; Kaziro Y
    J Biochem; 1977 Jul; 82(1):145-55. PubMed ID: 561060
    [No Abstract]   [Full Text] [Related]  

  • 10. Properties of 30S ribosomal particles reconstituted from precursor 16S ribonucleic acid.
    Wireman JW; Sypherd PS
    Biochemistry; 1974 Mar; 13(6):1215-21. PubMed ID: 4592471
    [No Abstract]   [Full Text] [Related]  

  • 11. Coding properties of methyl-deficient phenylalanyl transfer ribonucleic acid from Escherichia coli.
    Stern R; Gonano F; Fleissner E; Littauer UZ
    Biochemistry; 1970 Jan; 9(1):10-8. PubMed ID: 4903881
    [No Abstract]   [Full Text] [Related]  

  • 12. Further studies on bacterial polypeptide elongation.
    Lucas-Lenard J; Tao P; Haenni AL
    Cold Spring Harb Symp Quant Biol; 1969; 34():455-62. PubMed ID: 4314911
    [No Abstract]   [Full Text] [Related]  

  • 13. Ribosomal sites involved in binding of aminoacyl-tRNA and EF 2. Mode of action of fusidic acid.
    Carrasco L; Vazquez D
    FEBS Lett; 1973 May; 32(1):152-6. PubMed ID: 4715676
    [No Abstract]   [Full Text] [Related]  

  • 14. Interaction of polypeptide chain elongation factors with rat liver ribosomal subunits.
    Rao P; Moldave K
    J Mol Biol; 1969 Dec; 46(3):447-57. PubMed ID: 5365958
    [No Abstract]   [Full Text] [Related]  

  • 15. Properties of elongation factor G: its interaction with the ribosomal peptidyl-site.
    Chinali G; Parmeggiani A
    Biochem Biophys Res Commun; 1973 Sep; 54(1):33-9. PubMed ID: 4582381
    [No Abstract]   [Full Text] [Related]  

  • 16. Aminoacyltransferase I-catalysed binding of phenylalanyl-transfer ribonucleic acid to muscle ribosomes from normal and diabetic rats.
    Leader DP; Wool IG; Castles JJ
    Biochem J; 1971 Sep; 124(3):537-41. PubMed ID: 5135240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the nature of two ribosomal sites for specific sRNA binding.
    Igarashi K; Kaji A
    Proc Natl Acad Sci U S A; 1967 Nov; 58(5):1971-6. PubMed ID: 4866984
    [No Abstract]   [Full Text] [Related]  

  • 18. Affinity-labelling of Escherichia coli ribosomes by a derivative of phenylalanyl-tRNA. A critical test for the specificity.
    Bauer K; Czernilofsky AP; Kuechler E
    Biochim Biophys Acta; 1975 Jun; 395(2):146-51. PubMed ID: 1095073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of N-acetylphenylalanyl tRNA to ribosomes--comparison with the binding of phenylalanyl tRNA.
    Suzuka I; Sekikawa K; Tanaka S
    Arch Biochem Biophys; 1970 Feb; 136(2):430-5. PubMed ID: 4907877
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of removal or replacement with proflavine of the Y base in the anticodon loop of yeast tRNAPhe on binding into the acceptor or donor sites of reticulocyte ribosomes.
    Odom OW; Hardesty B; Wintermeyer W; Zachau HG
    Arch Biochem Biophys; 1974 Jun; 162(2):536-51. PubMed ID: 4600956
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.