These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 469798)

  • 21. Free concentrations of Na, K, and Cl in the retina of the honeybee drone: stimulus-induced redistribution and homeostasis.
    Coles JA; Orkand RK; Yamate CL; Tsacopoulos M
    Ann N Y Acad Sci; 1986; 481():303-17. PubMed ID: 3468862
    [No Abstract]   [Full Text] [Related]  

  • 22. Light-dependent hydration of the space surrounding photoreceptors in the cat retina.
    Li JD; Govardovskii VI; Steinberg RH
    Vis Neurosci; 1994; 11(4):743-52. PubMed ID: 7918224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systemic hypoxia dehydrates the space surrounding photoreceptors in the cat retina.
    Cao W; Govardovskii V; Li JD; Steinberg RH
    Invest Ophthalmol Vis Sci; 1996 Mar; 37(4):586-96. PubMed ID: 8595958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The time course of the light-induced extracellular potassium change around receptors and at the vitreal surface compared with the time course of slow PIII wave in the isolated rabbit retina.
    Hanitzsch R
    Physiol Bohemoslov; 1988; 37(3):227-33. PubMed ID: 2975791
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An analysis of the wave forms of photoreceptor potentials in the retina of the chephalopod Sepiola atlantica.
    Duncan G; Pynsent PB
    J Physiol; 1979 Mar; 288():171-88. PubMed ID: 469714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The contribution of glial cells to spontaneous and evoked potentials.
    Galambos R; Juhasz G
    Int J Psychophysiol; 1997 Jun; 26(1-3):229-36. PubMed ID: 9203005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Extracellular potassium in the frog retina and its light-induced changes].
    Bykov KA; Dmitriev AV; Skachkov SN
    Fiziol Zh SSSR Im I M Sechenova; 1984 Oct; 70(10):1381-7. PubMed ID: 6334619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The supply of metabolic substrate from glia to photoreceptors in the retina of the honeybee drone.
    Tsacopoulos M; Coles JA; Van de Werve G
    J Physiol (Paris); 1987; 82(4):279-87. PubMed ID: 3503929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog.
    Nicoll RA
    J Physiol; 1979 May; 290(2):113-27. PubMed ID: 224169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light-evoked increases in [K+]o in proximal portion of the dark-adapted cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1989 Jun; 61(6):1233-43. PubMed ID: 2746323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between PI and slow PIII in the generation of the electroretinogram c-wave.
    Nilsson SE
    Dev Ophthalmol; 1984; 9():53-8. PubMed ID: 6098491
    [No Abstract]   [Full Text] [Related]  

  • 32. Extracellular K+ activity changes related to electroretinogram components. I. Amphibian (I-type) retinas.
    Dick E; Miller RF
    J Gen Physiol; 1985 Jun; 85(6):885-909. PubMed ID: 3926945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionic mechanism for the photoreceptor potential of the retina of Bufo marinus.
    Brown JE; Pinto LH
    J Physiol; 1974 Feb; 236(3):575-91. PubMed ID: 4207130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of extracellular chloride suppresses transmitter release from photoreceptor terminals in the mudpuppy retina.
    Thoreson WB; Miller RF
    J Gen Physiol; 1996 May; 107(5):631-42. PubMed ID: 8740376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The response to monochromatic light flashes of the oxygen consumption of honeybee drone photoreceptors.
    Jones GJ; Tsacopoulos M
    J Gen Physiol; 1987 May; 89(5):791-813. PubMed ID: 3598560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light-evoked changes in extracellular calcium concentration in frog retina.
    Livsey CT; Huang B; Xu J; Karwoski CJ
    Vision Res; 1990; 30(6):853-61. PubMed ID: 2385926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micro-electrode measurements and functional aspects of chloride activity in cyprinid fish retina: extracellular activity and intracellular activities of L- and C-type horizontal cells.
    Djamgoz MB; Laming PJ
    Vision Res; 1987; 27(9):1481-9. PubMed ID: 3445482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of maintained illumination upon [K+]0 in the subretinal space of the frog retina.
    Oakley B; Steinberg RH
    Vision Res; 1982; 22(7):767-73. PubMed ID: 6981879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrastructural and electrophysiological changes associated with K(+)-evoked release of neurotransmitter at the synaptic terminals of skate photoreceptors.
    Ripps H; Chappell RL
    Vis Neurosci; 1991 Dec; 7(6):597-609. PubMed ID: 1685329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An eyecup slice preparation for intracellular recording in vertebrate retinas.
    Burkhardt DA; Gottesman J; Thoreson WB
    J Neurosci Methods; 1989 Jun; 28(3):179-87. PubMed ID: 2755176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.