BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 4699216)

  • 1. Octene epoxidation by a cold-stable alkane-oxidizing isolate of Pseudomonas oleovorans.
    Schwartz RD
    Appl Microbiol; 1973 Apr; 25(4):574-7. PubMed ID: 4699216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudomonas oleovorans hydroxylation-epoxidation system: additional strain improvements.
    Schwartz RD; McCoy CJ
    Appl Microbiol; 1973 Aug; 26(2):217-8. PubMed ID: 4743875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of 1-alkenes to 1,2-epoxyalkanes by Pseudomonas oleovorans.
    Abbott BJ; Hou CT
    Appl Microbiol; 1973 Jul; 26(1):86-91. PubMed ID: 4726833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic epoxidation: synthesis of 7,8-epoxy-1-octene, 1,2-7,8-diepoxyoctane, and 1,2-Epoxyoctane by Pseudomonas oleovorans.
    Schwartz RD; McCoy CJ
    Appl Environ Microbiol; 1976 Jan; 31(1):78-82. PubMed ID: 942210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential.
    Witholt B; de Smet MJ; Kingma J; van Beilen JB; Kok M; Lageveen RG; Eggink G
    Trends Biotechnol; 1990 Feb; 8(2):46-52. PubMed ID: 1366497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic epoxidation. I. Alkene epoxidation by the -hydroxylation system of Pseudomonas oleovorans.
    May SW; Abbott BJ
    Biochem Biophys Res Commun; 1972 Sep; 48(5):1230-4. PubMed ID: 4341053
    [No Abstract]   [Full Text] [Related]  

  • 7. Enzymatic epoxidation. II. Comparison between the epoxidation and hydroxylation reactions catalyzed by the -hydroxylation system of Pseudomonas oleovorans.
    May SW; Abbott BJ
    J Biol Chem; 1973 Mar; 248(5):1725-30. PubMed ID: 4348547
    [No Abstract]   [Full Text] [Related]  

  • 8. Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids.
    Nieder M; Shapiro J
    J Bacteriol; 1975 Apr; 122(1):93-8. PubMed ID: 804473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics of alkane oxidation by Pseudomonas oleovorans.
    van Beilen JB; Wubbolts MG; Witholt B
    Biodegradation; 1994 Dec; 5(3-4):161-74. PubMed ID: 7532480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome content of two pseudomonads containing mixed-function oxidase systems.
    Peterson JA
    J Bacteriol; 1970 Sep; 103(3):714-21. PubMed ID: 4319837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction.
    Nieboer M; Kingma J; Witholt B
    Mol Microbiol; 1993 Jun; 8(6):1039-51. PubMed ID: 8361351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants.
    Staijen IE; Marcionelli R; Witholt B
    J Bacteriol; 1999 Mar; 181(5):1610-6. PubMed ID: 10049394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of alkane oxidation in Pseudomonas putida.
    Grund A; Shapiro J; Fennewald M; Bacha P; Leahy J; Markbreiter K; Nieder M; Toepfer M
    J Bacteriol; 1975 Aug; 123(2):546-56. PubMed ID: 1150626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of n-alkane-1-sulfonates by Pseudomonas.
    Thysse GJ; Wanders TH
    Antonie Van Leeuwenhoek; 1972; 38(1):53-63. PubMed ID: 4537087
    [No Abstract]   [Full Text] [Related]  

  • 15. Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk+ bacterial strains.
    Staijen IE; Witholt B
    Biotechnol Bioeng; 1998 Jan; 57(2):228-37. PubMed ID: 10099198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli.
    Staijen IE; Van Beilen JB; Witholt B
    Eur J Biochem; 2000 Apr; 267(7):1957-65. PubMed ID: 10727934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway.
    Yuste L; Canosa I; Rojo F
    J Bacteriol; 1998 Oct; 180(19):5218-26. PubMed ID: 9748457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural effects on the reactivity of substrates and inhibitors in the epoxidation system of Pseudomonas oleovorans.
    May SW; Schwartz RD; Abbott BJ; Zaborsky OR
    Biochim Biophys Acta; 1975 Sep; 403(1):245-55. PubMed ID: 1174548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli.
    Eggink G; Lageveen RG; Altenburg B; Witholt B
    J Biol Chem; 1987 Dec; 262(36):17712-8. PubMed ID: 2826430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The isolation and characterization of alkane-oxidizing organisms and the effect of growth substrate on isocitric lyase.
    Trust TJ; Millis NF
    J Gen Microbiol; 1970 May; 61(2):245-54. PubMed ID: 5476894
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.