These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 4699253)

  • 1. The physiological response of the estuarine clam, Rangia cuneata (Gray), to salinity. II. Uptake of glycine.
    Anderson JW; Bedford WB
    Biol Bull; 1973 Apr; 144(2):229-47. PubMed ID: 4699253
    [No Abstract]   [Full Text] [Related]  

  • 2. Organofluorophosphate-hydrolyzing activity in an estuarine clam, Rangia cuneata.
    Anderson RS; Durst HD; Landis WG
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1988; 91(2):575-8. PubMed ID: 2905972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury and the estuarine marsh clam, Rangia cuneata Gray. I. Toxicity.
    Dillon TM
    Arch Environ Contam Toxicol; 1977; 6(2-3):249-55. PubMed ID: 901005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taurine and glycine in the gills of the clam Protothaca staminea exposed to chlorinated seawater.
    Roesijadi G
    Bull Environ Contam Toxicol; 1979 Jul; 22(4-5):543-7. PubMed ID: 39651
    [No Abstract]   [Full Text] [Related]  

  • 5. Na++K+-ATPase in the osmoregulating clam Rangia cuneata.
    Saintsing DG; Towle DW
    J Exp Zool; 1978 Dec; 206(3):435-42. PubMed ID: 213525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaccumulation of polynuclear aromatic hydrocarbons by the clam, Rangia cuneata, in the vicinity of a creosote spill.
    DeLeon IR; Ferrario JB; Byrne CJ
    Bull Environ Contam Toxicol; 1988 Dec; 41(6):872-9. PubMed ID: 3233386
    [No Abstract]   [Full Text] [Related]  

  • 7. eDNA and specific primers for early detection of invasive species--A case study on the bivalve Rangia cuneata, currently spreading in Europe.
    Ardura A; Zaiko A; Martinez JL; Samulioviene A; Semenova A; Garcia-Vazquez E
    Mar Environ Res; 2015 Dec; 112(Pt B):48-55. PubMed ID: 26453004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysosomes and the modulation of cell morphology in the isthmus region of the outer mantle epithelium in the estuarine clam, Rangia cuneata.
    Marsh ME; Summerall RD; Sass RL
    J Ultrastruct Res; 1981 Nov; 77(2):146-59. PubMed ID: 7310937
    [No Abstract]   [Full Text] [Related]  

  • 9. Life on the edge: Compensatory growth and feeding rates at environmental extremes mediates potential ecosystem engineering by an invasive bivalve.
    Tang F; Kemp JS; Aldridge DC
    Sci Total Environ; 2020 Mar; 706():135741. PubMed ID: 31791790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental salinity modulates the effects of elevated CO2 levels on juvenile hard-shell clams, Mercenaria mercenaria.
    Dickinson GH; Matoo OB; Tourek RT; Sokolova IM; Beniash E
    J Exp Biol; 2013 Jul; 216(Pt 14):2607-18. PubMed ID: 23531824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating a heavy metal spill under estuarine conditions: effects on the clam Scrobicularia plana.
    García-Luque E; DelValls TA; Casado-Martínez C; Forja JM; Gómez-Parra A
    Mar Environ Res; 2004; 58(2-5):671-4. PubMed ID: 15178097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and accumulation of an organochlorine insecticide (dieldrin) by an estuarine mollusc, Rangia cuneata.
    Petrocelli SR; Hanks AR; Anderson J
    Bull Environ Contam Toxicol; 1973 Nov; 10(5):315-20. PubMed ID: 4766135
    [No Abstract]   [Full Text] [Related]  

  • 13. The influence of salinity on the heat-shock protein response of Potamocorbula amurensis (Bivalvia).
    Werner I
    Mar Environ Res; 2004; 58(2-5):803-7. PubMed ID: 15178117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The adaptations of the estuarine clam, Katelysia opima to the salinity fluctuations.
    Mane UH
    Riv Biol; 1974; 67(1-2):73-137. PubMed ID: 4416987
    [No Abstract]   [Full Text] [Related]  

  • 15. Using osmotic shock to control invasive aquatic species.
    Tang F; Aldridge DC
    J Environ Manage; 2021 Feb; 279():111604. PubMed ID: 33168295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of salinity on the Manila clam (Ruditapes philippinarum) using the neutral red retention assay with adapted physiological saline solutions.
    Coughlan BM; Moroney GA; van Pelt FN; O'Brien NM; Davenport J; O'Halloran J
    Mar Pollut Bull; 2009 Nov; 58(11):1680-4. PubMed ID: 19664787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rangia cuneata on the East Coast: Thousand Mile Range Extension, or Resurgence?
    Hopkins SH; Andrews JD
    Science; 1970 Feb; 167(3919):868-9. PubMed ID: 17742614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of genes involved in the uptake of inorganic carbon in the gill of a deep-sea vesicomyid clam harboring intracellular thioautotrophic bacteria.
    Hongo Y; Ikuta T; Takaki Y; Shimamura S; Shigenobu S; Maruyama T; Yoshida T
    Gene; 2016 Jul; 585(2):228-40. PubMed ID: 27016297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of dissolved and colloidal organic carbon on the uptake of Ag, Cd, and Cr by the marine mussel Perna viridis.
    Pan JF; Wang WX
    Environ Pollut; 2004 Jun; 129(3):467-77. PubMed ID: 15016467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicological responses to acute mercury exposure for three species of Manila clam Ruditapes philippinarum by NMR-based metabolomics.
    Liu X; Zhang L; You L; Cong M; Zhao J; Wu H; Li C; Liu D; Yu J
    Environ Toxicol Pharmacol; 2011 Mar; 31(2):323-32. PubMed ID: 21787701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.