These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 4702379)

  • 1. The change in shape and internal form of the lens of the eye on accommodation.
    Brown N
    Exp Eye Res; 1973 Apr; 15(4):441-59. PubMed ID: 4702379
    [No Abstract]   [Full Text] [Related]  

  • 2. Changes in ocular dimensions and refraction with accommodation.
    Garner LF; Yap MK
    Ophthalmic Physiol Opt; 1997 Jan; 17(1):12-7. PubMed ID: 9135807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biometric constancy of the anterior eye segment as demonstrated by slit image photography according to the Scheimpflug principle.
    Olbert D; Kehrhahn OH
    Ophthalmic Res; 1992; 24(1):27-31. PubMed ID: 1608589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slit-lamp studies of the rhesus monkey eye: II. Changes in crystalline lens shape, thickness and position during accommodation and aging.
    Koretz JF; Bertasso AM; Neider MW; True-Gabelt BA; Kaufman PL
    Exp Eye Res; 1987 Aug; 45(2):317-26. PubMed ID: 3653294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging of the human crystalline lens and anterior segment.
    Cook CA; Koretz JF; Pfahnl A; Hyun J; Kaufman PL
    Vision Res; 1994 Nov; 34(22):2945-54. PubMed ID: 7975328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biometric investigation of changes in the anterior eye segment during accommodation.
    Drexler W; Baumgartner A; Findl O; Hitzenberger CK; Fercher AF
    Vision Res; 1997 Oct; 37(19):2789-800. PubMed ID: 9373677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive measurements of the dynamic changes in the ciliary muscle, crystalline lens morphology, and anterior chamber during accommodation with a high-resolution OCT.
    Esteve-Taboada JJ; Domínguez-Vicent A; Monsálvez-Romín D; Del Águila-Carrasco AJ; Montés-Micó R
    Graefes Arch Clin Exp Ophthalmol; 2017 Jul; 255(7):1385-1394. PubMed ID: 28424868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the internal structure of the human crystalline lens with age and accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA; Vrensen GF
    Vision Res; 2003 Oct; 43(22):2363-75. PubMed ID: 12962993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The shape of the lens equator.
    Brown N
    Exp Eye Res; 1974 Dec; 19(6):571-6. PubMed ID: 4442466
    [No Abstract]   [Full Text] [Related]  

  • 10. [Studies on dynamic changes of crystalline lens due to accommodation. Report I. The principle of a new recording device].
    Manabe T
    Nippon Ganka Gakkai Zasshi; 1974 Nov; 78(11):1213-7. PubMed ID: 4476184
    [No Abstract]   [Full Text] [Related]  

  • 11. A photographic study of accommodative mechanisms: changes in the lens nucleus during accommodation.
    Patnaik B
    Invest Ophthalmol; 1967 Dec; 6(6):601-11. PubMed ID: 6073963
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of change in central lens thickness and lens shape on age-related decline in accommodation.
    Schachar RA
    J Cataract Refract Surg; 2006 Nov; 32(11):1897-8; author reply 1898. PubMed ID: 17081877
    [No Abstract]   [Full Text] [Related]  

  • 13. Crystalline lens accommodation and anterior chamber depth.
    Obstfeld H
    Ophthalmic Physiol Opt; 1989 Jan; 9(1):36-40. PubMed ID: 2594375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accommodation used to determine ultrasound velocity in the human lens.
    van der Heijde GL; Weber J
    Optom Vis Sci; 1989 Dec; 66(12):830-3. PubMed ID: 2626248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [On the transfer of fluorescein in the anterior chamber to the cornea and lens].
    Ogino K
    Nippon Ganka Gakkai Zasshi; 1971; 75(5):1226-30. PubMed ID: 5105023
    [No Abstract]   [Full Text] [Related]  

  • 16. Change in shape of the aging human crystalline lens with accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA
    Vision Res; 2005 Jan; 45(1):117-32. PubMed ID: 15571742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biometric study of ocular changes during accommodation.
    Shum PJ; Ko LS; Ng CL; Lin SL
    Am J Ophthalmol; 1993 Jan; 115(1):76-81. PubMed ID: 8420382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does the lens diameter increase or decrease during accommodation? Human accommodation studies: a new technique using infrared retro-illumination video photography and pixel unit measurements.
    Wilson RS
    Trans Am Ophthalmol Soc; 1997; 95():261-7; discussion 267-70. PubMed ID: 9440174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new schematic eye model incorporating accommodation.
    Popiolek-Masajada A; Kasprzak HT
    Optom Vis Sci; 1999 Oct; 76(10):720-7. PubMed ID: 10524788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central surface curvatures of postmortem- extracted intact human crystalline lenses: implications for understanding the mechanism of accommodation.
    Schachar RA
    Ophthalmology; 2004 Sep; 111(9):1699-704. PubMed ID: 15350325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.