These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 4702444)

  • 1. Relationship between tubular net sodium reabsorption and peritubular potassium uptake in the perfused Necturus kidney.
    Giebisch G; Sullivan LP; Whittembury G
    J Physiol; 1973 Apr; 230(1):51-74. PubMed ID: 4702444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of furosemide on luminal sodium, chloride and potassium transport in the early distal tubule of Amphiuma kidney. Effects of potassium adaptation.
    Oberleithner H; Guggino W; Giebisch G
    Pflugers Arch; 1983 Jan; 396(1):27-33. PubMed ID: 6835805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of ouabain and ethacrynic acid on the intracellular sodium and potassium concentrations in renal medullary slices incubated in cold potassium-free ringer solution and re-incubated at 37 degrees C in the presence of external potassium.
    Law RO
    J Physiol; 1976 Jan; 254(3):743-58. PubMed ID: 1255504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics of tubular sodium reabsorption sensitive to ethacrynic acid and ouabain.
    Sejersted OM; Steen PA; Kiil F
    Am J Physiol; 1982 Mar; 242(3):F254-60. PubMed ID: 6278951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium and sodium transport across single distal tubules of Amphiuma.
    Wiederholt M; Sullivan WJ; Giebisch G
    J Gen Physiol; 1971 May; 57(5):495-525. PubMed ID: 5553099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of ouabain and diuretics on sodium, potassium and chloride retention in perfused rat kidney.
    Bikhazi AB; Zantut H; Maarawi N; Sayyid K
    Comp Biochem Physiol A Comp Physiol; 1984; 77(3):507-11. PubMed ID: 6142804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between peritubular membrane potential and net fluid reabsorption in the distal renal tubule of Amphiuma.
    Cohen B; Giebisch G; Hansen LL; Teuscher U; Wiederholt M
    J Physiol; 1984 Mar; 348():115-34. PubMed ID: 6716280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of temperature, medium K+, ouabain and ethacrynic acid on transport of electrolytes and water by separated renal tubules.
    Podevin RA; Boumendil-Podevin EF
    Biochim Biophys Acta; 1972 Sep; 282(1):234-49. PubMed ID: 5070080
    [No Abstract]   [Full Text] [Related]  

  • 9. Some aspects of proximal tubular sodium chloride reabsorption in Necturus kidney.
    Whittembury G; Diezi F; Diezi J; Spring K; Giebisch G
    Kidney Int; 1975 May; 7(5):293-30. PubMed ID: 237133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion movements in human red cells independent of the sodium pump.
    Lubowitz H; Whittam R
    J Physiol; 1969 May; 202(1):111-31. PubMed ID: 4238987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium flux in smooth muscle of frog stomach.
    Stephenson EW
    Am J Physiol; 1976 Mar; 230(3):743-53. PubMed ID: 1266979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple pumps for sodium reabsorption by the perfused kidney.
    Besarab A; Silva P; Epstein FH
    Kidney Int; 1976 Aug; 10(2):147-53. PubMed ID: 135114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependency of renal potassium excretion on Na,K-ATPase transport rate.
    Sejersted OM; Monclair T; Mathisen O; Hartmann A; Kiil F
    Acta Physiol Scand; 1985 Jan; 123(1):9-19. PubMed ID: 2982247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic transport and membrane potential of rat liver cells in normal and low-chloride solutions.
    Claret B; Claret M; Mazet JL
    J Physiol; 1973 Apr; 230(1):87-101. PubMed ID: 4702455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory interaction of ATP Na+ and Cl- in the turnover cycle of the NaK2Cl cotransporter.
    Whisenant N; Khademazad M; Muallem S
    J Gen Physiol; 1993 Jun; 101(6):889-908. PubMed ID: 8392531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal Na,K-adenosine triphosphatase transport rate limits transcellular NaCl reabsorption in distal nephrons of volume-expanded dogs.
    Kiil F; Hartmann A; Langberg H; Sejersted OM; Holthe MR
    J Pharmacol Exp Ther; 1986 Jul; 238(1):327-33. PubMed ID: 3014121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation between cell Na extrusion and transtubular absorption in the perfused toad kidney: the effect of K, ouabain and ethacrynic acid.
    Whittembury G; Fishman J
    Pflugers Arch; 1969; 307(3):138-53. PubMed ID: 4238338
    [No Abstract]   [Full Text] [Related]  

  • 18. Active sodium transport and fluid secretion in the gall-bladder epithelium of Necturus.
    Giraldez F
    J Physiol; 1984 Mar; 348():431-55. PubMed ID: 6716291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between glucose and sodium excretion in the new-born dog.
    Baker JT; Kleinman LI
    J Physiol; 1974 Nov; 243(1):45-61. PubMed ID: 4449064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell electrical potentials during enhanced sodium extrusion in guinea-pig kidney cortex slices.
    Proverbio F; Whittembury G
    J Physiol; 1975 Sep; 250(3):559-78. PubMed ID: 1177150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.