These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 470290)
1. Mechanical factors affecting recovery from incomplete cervical spinal cord injury: a preliminary report. Bohlman HH; Bahniuk E; Raskulinecz G; Field G Johns Hopkins Med J; 1979 Sep; 145(3):115-25. PubMed ID: 470290 [No Abstract] [Full Text] [Related]
2. Experimental spinal cord injury produced by slow, graded compression. Alterations of cortical and spinal evoked potentials. Schramm J; Hashizume K; Fukushima T; Takahashi H J Neurosurg; 1979 Jan; 50(1):48-57. PubMed ID: 758379 [No Abstract] [Full Text] [Related]
3. Endogenous repair after spinal cord contusion injuries in the rat. Beattie MS; Bresnahan JC; Komon J; Tovar CA; Van Meter M; Anderson DK; Faden AI; Hsu CY; Noble LJ; Salzman S; Young W Exp Neurol; 1997 Dec; 148(2):453-63. PubMed ID: 9417825 [TBL] [Abstract][Full Text] [Related]
4. [Spinal cord evoked potential in experimental spinal cord injury: the changes of spinal cord evoked potential following impact injury, and the correlation between the change in amplitude of the spinal cord evoked potential after injury and the prognosis for motor recovery of legs]. Isu T; Iwasaki Y; Akino M; Abe H No Shinkei Geka; 1989 Jul; 17(7):629-34. PubMed ID: 2812263 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of experimental spinal cord injury using cortical evoked potentials. Martin SH; Bloedel JR J Neurosurg; 1973 Jul; 39(1):75-81. PubMed ID: 4717142 [No Abstract] [Full Text] [Related]
6. Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord. Taccola G; Margaryan G; Mladinic M; Nistri A Neuroscience; 2008 Aug; 155(2):538-55. PubMed ID: 18602453 [TBL] [Abstract][Full Text] [Related]
7. A model of spinal cord injury. Eidelberg E; Staten E; Watkins JC; McGraw D; McFadden C Surg Neurol; 1976 Jul; 6(1):35-8. PubMed ID: 985622 [TBL] [Abstract][Full Text] [Related]
8. [Spinal cord evoked potential in experimental spinal cord injury--the changes in spinal cord evoked potential following impact injury, and effect of mannitol administration on acute experimental spinal cord injury]. Isu T Hokkaido Igaku Zasshi; 1990 Mar; 65(2):142-51. PubMed ID: 2114347 [TBL] [Abstract][Full Text] [Related]
9. Spinal cord monitoring of experimental incomplete cervical spinal cord injury: a preliminary report. Bohlman HH; Bahniuk E; Field G; Raskulinecz G Spine (Phila Pa 1976); 1981; 6(5):428-36. PubMed ID: 7302676 [TBL] [Abstract][Full Text] [Related]
11. Electrophysiological investigations of neurotransplant-mediated recovery after spinal cord injury. Skinner RD; Houle JD; Reese NB; Garcia-Rill EE Adv Neurol; 1997; 72():277-90. PubMed ID: 8993705 [No Abstract] [Full Text] [Related]
12. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats. You SW; Chen BY; Liu HL; Lang B; Xia JL; Jiao XY; Ju G Restor Neurol Neurosci; 2003; 21(1-2):39-45. PubMed ID: 12808201 [TBL] [Abstract][Full Text] [Related]
13. Corticomotor evoked potentials in acute and chronic blunt spinal cord injury in the rat: correlation with neurological outcome and histological damage. Simpson RK; Baskin DS Neurosurgery; 1987 Jan; 20(1):131-7. PubMed ID: 3808253 [TBL] [Abstract][Full Text] [Related]
14. Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans. Kawashima N; Nozaki D; Abe MO; Nakazawa K J Neurophysiol; 2008 Jun; 99(6):2946-55. PubMed ID: 18450579 [TBL] [Abstract][Full Text] [Related]
15. Course of motor recovery following ventrolateral spinal cord injury in the rat. Webb AA; Muir GD Behav Brain Res; 2004 Nov; 155(1):55-65. PubMed ID: 15325779 [TBL] [Abstract][Full Text] [Related]
16. Topical application of dynorphin A (1-17) antiserum attenuates trauma induced alterations in spinal cord evoked potentials, microvascular permeability disturbances, edema formation and cell injury: an experimental study in the rat using electrophysiological and morphological approaches. Winkler T; Sharma HS; Gordh T; Badgaiyan RD; Stålberg E; Westman J Amino Acids; 2002; 23(1-3):273-81. PubMed ID: 12373547 [TBL] [Abstract][Full Text] [Related]
17. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat. García-Alías G; López-Vales R; Forés J; Navarro X; Verdú E J Neurosci Res; 2004 Mar; 75(5):632-41. PubMed ID: 14991839 [TBL] [Abstract][Full Text] [Related]
18. [Recovery of function following incomplete section of the posterior funiculi of the spinal cord]. Nezlina NI Fiziol Zh SSSR Im I M Sechenova; 1976 Nov; 62(11):1592-1601. PubMed ID: 1022532 [TBL] [Abstract][Full Text] [Related]
19. Role of group II and group III metabotropic glutamate receptors in spinal cord injury. Mills CD; Johnson KM; Hulsebosch CE Exp Neurol; 2002 Jan; 173(1):153-67. PubMed ID: 11771948 [TBL] [Abstract][Full Text] [Related]
20. [Effect of mannitol administration and myelotomy on acute experimental spinal cord injury: investigation by spinal cord evoked potential]. Isu T; Iwasaki Y; Akino M; Abe H No Shinkei Geka; 1990 Mar; 18(3):267-72. PubMed ID: 2113634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]