These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 4703416)

  • 1. Effect of replacement of medium potassium by sodium, cesium or rubidium on in vitro iodide transport and iodoamino acid synthesis by rat thyroid.
    Haibach H; Greer MA
    Proc Soc Exp Biol Med; 1973 May; 143(1):114-7. PubMed ID: 4703416
    [No Abstract]   [Full Text] [Related]  

  • 2. [Content, distribution and chemical state of sodium, potassium, rubidium and cesium in different tissues of the white rat].
    Skul'skiĭ IA; Leont'ev VG; Burovina IV
    Izv Akad Nauk SSSR Biol; 1968; 1(6):831-7. PubMed ID: 5760569
    [No Abstract]   [Full Text] [Related]  

  • 3. [Preferential accumulation of cesium 137 in the mammalian organism, in comparison with potassium accumulation. I. Accumulation of potassium, rubidium and cesium in the perfused guinea pig heart].
    Edelmann L; Pfleger K; Matt KH
    Biophysik; 1971; 7(3):181-99. PubMed ID: 5088804
    [No Abstract]   [Full Text] [Related]  

  • 4. Ion and water transport in limonium. II. Short-circuit analysis.
    Hill AE
    Biochim Biophys Acta; 1967 Jul; 135(3):461-5. PubMed ID: 6048816
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of the effects of ouabain and of iodine adaptation on the thyroid iodide transport mechanism.
    Lee GY; Ingbar SH
    Endocrinology; 1965 Nov; 77(5):940-3. PubMed ID: 5843907
    [No Abstract]   [Full Text] [Related]  

  • 6. Energetics of amino acid transport into brain slices: effects of K+ depletion and Rb+ or Cs+ substitution on amino acid uptake.
    Banay-Schwartz M; Teller DN; Horn B; Lajtha A
    J Neurochem; 1977 Sep; 29(3):403-10. PubMed ID: 561166
    [No Abstract]   [Full Text] [Related]  

  • 7. Losses through roots of foliar applied mineral elements.
    Levi E
    Naturwissenschaften; 1968 Jan; 55(1):42. PubMed ID: 5700728
    [No Abstract]   [Full Text] [Related]  

  • 8. The effect of Diasone sodium on the iodide uptake in the rat thyroid.
    Karlsson HO
    Experientia; 1968 Oct; 24(10):1035-6. PubMed ID: 5711871
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of fatty acids and acyl-CoA on the permeability of mitochondrial membranes to monovalent cations.
    Wojtczak L
    FEBS Lett; 1974 Aug; 44(1):25-30. PubMed ID: 4851641
    [No Abstract]   [Full Text] [Related]  

  • 10. Factors influencing excretory patterns of Cesium-134, potassium-42 and rubidium-86 in rats.
    MRAZ FR; PATRICK H
    Proc Soc Exp Biol Med; 1957 Feb; 94(2):409-12. PubMed ID: 13408275
    [No Abstract]   [Full Text] [Related]  

  • 11. A correlative study of the effect of iodide administration in the rat on thyroidal iodide transport and organic iodine content.
    Socolow EL; Dunlap D; Sobel RA; Ingbar SH
    Endocrinology; 1968 Oct; 83(4):737-43. PubMed ID: 5685963
    [No Abstract]   [Full Text] [Related]  

  • 12. Stimulatory effect of ammonium ion on iodide trapping in isolated thyroid cells.
    Burke G; Kowalski K
    Life Sci II; 1971 Apr; 10(7):361-9. PubMed ID: 5580475
    [No Abstract]   [Full Text] [Related]  

  • 13. [Selectivity of cells of the Black Sea alga Ulva rigida to T1 + , Rb + and Cs + ].
    Skul'skiĭ IA; Glazunov VV; Zesenko AIa; Liubimov AA
    Tsitologiia; 1972 Jul; 14(7):849-56. PubMed ID: 4637817
    [No Abstract]   [Full Text] [Related]  

  • 14. [A method for study of the adsorption of potassium, rubidium and cesium to cell membranes].
    Edelmann L
    Biophysik; 1971; 7(3):247-50. PubMed ID: 4996739
    [No Abstract]   [Full Text] [Related]  

  • 15. A possible explanation of the cation selectivity in the active transport of erythrocytes.
    Györgyi S; Sugár I
    Acta Biol Med Ger; 1977; 36(5-6):909-12. PubMed ID: 146390
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of amphotericin B on thyroidal iodide concentration.
    Shishiba Y; Solomon DH
    Endocrinology; 1967 Sep; 81(3):467-74. PubMed ID: 4226711
    [No Abstract]   [Full Text] [Related]  

  • 17. Differences in the relationships between coronary blood flow and myocardial clearance of isotopes of potassium, rubidium, and cesium.
    Love WD; Ishihara Y; Lyon LD; Smith RO
    Am Heart J; 1968 Sep; 76(3):353-5. PubMed ID: 4951332
    [No Abstract]   [Full Text] [Related]  

  • 18. Contribution of some anions and cations to potential difference in frog crystalline lens.
    Murata T; Taura Y; Akaike N
    Exp Eye Res; 1974 Aug; 19(2):185-93. PubMed ID: 4548408
    [No Abstract]   [Full Text] [Related]  

  • 19. The ion selectivity and concentration dependence of cation coupled active sodium transport in squid giant axons.
    Sjodin RA; Beaugé LA
    Curr Mod Biol; 1967 May; 1(2):105-15. PubMed ID: 6060857
    [No Abstract]   [Full Text] [Related]  

  • 20. Role of protein synthesis in the utilization of administered iodide by thyroid glands in rats.
    Inoue K; Taurog A; Greer MA
    Endocrinology; 1970 Dec; 87(6):1298-305. PubMed ID: 5482706
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.