These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4705425)

  • 1. The effect of an antiviral peptide on the ribosomal reactions of the peptide elongation enzymes, EF-I and EF-II.
    Obrig TG; Irvin JD; Hardesty B
    Arch Biochem Biophys; 1973 Apr; 155(2):278-89. PubMed ID: 4705425
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of GTP hydrolysis by the peptide elongation enzymes on the sedimentation of ribosomes bearing peptidyl-tRNA and on the susceptibility of ribosome-bound tRNA to hydrolysis by ribonuclease.
    Culp W; Odom OW; Hardesty B
    Arch Biochem Biophys; 1973 Apr; 155(2):225-36. PubMed ID: 4350250
    [No Abstract]   [Full Text] [Related]  

  • 3. Interaction of rabbit reticulocyte elongation factor 1 with guanosine-triphosphate and aminoacyl-transfer ribonucleic acid.
    Ravel JM; Dawkins RC; Lax S; Odom OW; Hardesty B
    Arch Biochem Biophys; 1973 Apr; 155(2):332-41. PubMed ID: 4574542
    [No Abstract]   [Full Text] [Related]  

  • 4. The sequence of reactions leading to the synthesis of a peptide bond on reticulocyte ribosomes.
    Hardesty B; Culp W; McKeehan W
    Cold Spring Harb Symp Quant Biol; 1969; 34():331-45. PubMed ID: 5266171
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition by aminoacyl transfer ribonucleic acid of elongation factor G-dependent binding of guanosine nucleotide to ribosomes.
    Modolell J; Vazquez D
    J Biol Chem; 1973 Jan; 248(2):488-93. PubMed ID: 4567784
    [No Abstract]   [Full Text] [Related]  

  • 6. Properties of elongation factor G: its interaction with the ribosomal peptidyl-site.
    Chinali G; Parmeggiani A
    Biochem Biophys Res Commun; 1973 Sep; 54(1):33-9. PubMed ID: 4582381
    [No Abstract]   [Full Text] [Related]  

  • 7. Characterization of the peptidyltransferase reaction catalyzed by rat liver 60S ribosomal subunits.
    Thompson HA; Moldave K
    Biochemistry; 1974 Mar; 13(7):1348-53. PubMed ID: 4819752
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of mammalian ribosomal sub-units and elongation factors in poly U-directed protein synthesis.
    Busiello E; Di Girolamo M; Felicetti L
    Biochim Biophys Acta; 1971 Jan; 228(1):289-90. PubMed ID: 5546568
    [No Abstract]   [Full Text] [Related]  

  • 9. The requirement for tRNA for the shift in the optimum Mg++ concentration during the synthesis of polyphenylalanine.
    Mosteller RD; Culp WJ; Hardesty B
    Biochem Biophys Res Commun; 1968 Mar; 30(6):631-6. PubMed ID: 5642381
    [No Abstract]   [Full Text] [Related]  

  • 10. The binding of aminoacyl-transfer ribonucleic acid to wheat ribosomes.
    Allende JE; Tarragó A; Monasterio O; Litvak S; Gatica M; Ojeda JM; Matamala M
    Biochem Soc Symp; 1973; (38):77-96. PubMed ID: 4807464
    [No Abstract]   [Full Text] [Related]  

  • 11. Further studies on the interactions of elongation factor 1 from animal tissues.
    Weissbach H; Redfield B; Moon HM
    Arch Biochem Biophys; 1973 May; 156(1):267-75. PubMed ID: 4738301
    [No Abstract]   [Full Text] [Related]  

  • 12. Selective utilization of valyl-tRNA having a particular coding specificity in a rabbit hemoglobin synthesizing system.
    Takeishi K; Takemoto T; Nishimura S; Ukita T
    Biochem Biophys Res Commun; 1972 May; 47(4):746-52. PubMed ID: 4554638
    [No Abstract]   [Full Text] [Related]  

  • 13. Met-tRNA hydrolase from reticulocytes specific for Met-tRNA f Met on 40S ribosomal subunits.
    Morrisey J; Hardesty B
    Arch Biochem Biophys; 1972 Sep; 152(1):385-97. PubMed ID: 5072706
    [No Abstract]   [Full Text] [Related]  

  • 14. Purification of the transfer enzymes from reticulocytes and properties of the transfer reaction.
    Arlinghaus R; Shaeffer J; Bishop J; Schweet R
    Arch Biochem Biophys; 1968 May; 125(2):604-13. PubMed ID: 5656810
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of removal or replacement with proflavine of the Y base in the anticodon loop of yeast tRNAPhe on binding into the acceptor or donor sites of reticulocyte ribosomes.
    Odom OW; Hardesty B; Wintermeyer W; Zachau HG
    Arch Biochem Biophys; 1974 Jun; 162(2):536-51. PubMed ID: 4600956
    [No Abstract]   [Full Text] [Related]  

  • 16. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes.
    Ravel JM
    Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1811-6. PubMed ID: 5340636
    [No Abstract]   [Full Text] [Related]  

  • 17. Factor dependent binding of methionyl-tRNAs to reticulocyte ribosomes.
    Shafritz DA; Anderson WF
    Nature; 1970 Aug; 227(5261):918-20. PubMed ID: 5452537
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of varying the KC1 and MgCl2 concentration on the enzymic and nonenzymic binding of phenylalanyl-RNA to reticulocyte ribosomes.
    Shaeffer J; Arlinghaus R; Schweet R
    Arch Biochem Biophys; 1968 May; 125(2):614-22. PubMed ID: 5656811
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of the presence of a pCpCpCpA 3'terminus in Phe-tRNA Phe yeast on the interaction with elongation factors and with the poly U-ribosome system.
    Thang MN; Dondon L; Thang DC; Rether B
    FEBS Lett; 1972 Oct; 26(1):145-50. PubMed ID: 4564655
    [No Abstract]   [Full Text] [Related]  

  • 20. Ribosomal sites involved in binding of aminoacyl-tRNA and EF 2. Mode of action of fusidic acid.
    Carrasco L; Vazquez D
    FEBS Lett; 1973 May; 32(1):152-6. PubMed ID: 4715676
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.