These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 470544)

  • 41. Effects of L-dopa and bromocriptine on haloperidol-induced motor deficits in mice.
    Kobayashi T; Araki T; Itoyama Y; Takeshita M; Ohta T; Oshima Y
    Life Sci; 1997; 61(26):2529-38. PubMed ID: 9416775
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ascorbic acid reduces accumulation of [3H]spiperone in mouse striatum in vivo.
    Dorris RL
    Proc Soc Exp Biol Med; 1987 Oct; 186(1):13-6. PubMed ID: 3628250
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ergoline derivative LEK-8829-induced turning behavior in rats with unilateral striatal ibotenic acid lesions: interaction with bromocriptine.
    Sprah L; Zivin M; Sket D
    J Pharmacol Exp Ther; 1999 Mar; 288(3):1093-100. PubMed ID: 10027846
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relationship between dopamine receptor occupation by spiperone and acetylcholine levels in the rat striatum after long-term haloperidol treatment depends on dopamine innervation.
    Korf J; Sebens JB
    J Neurochem; 1987 Feb; 48(2):516-21. PubMed ID: 2878979
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3H-Apomorphine receptors in various rat brain regions: a study of specific and nonspecific binding and the influence of chronic neuroleptic treatment.
    Leysen JE
    Adv Biochem Psychopharmacol; 1980; 24():123-32. PubMed ID: 6105770
    [No Abstract]   [Full Text] [Related]  

  • 46. Antagonism of dopamine supersensitivity by estrogen: neurochemical studies in an animal model of tardive dyskinesia.
    Gordon JH; Diamond BI
    Biol Psychiatry; 1981 Apr; 16(4):365-71. PubMed ID: 7194695
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chronic haloperidol affects striatal D2-dopamine receptor reappearance after irreversible receptor blockade.
    Pich EM; Benfenati F; Farabegoli C; Fuxe K; Meller E; Aronsson M; Goldstein M; Agnati LF
    Brain Res; 1987 Dec; 435(1-2):147-52. PubMed ID: 2962698
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differentiation by ascorbic acid of dopamine agonist and antagonist binding sites in striatum.
    Kayaalp SO; Neff NH
    Life Sci; 1980 Jun; 26(22):1837-41. PubMed ID: 7401904
    [No Abstract]   [Full Text] [Related]  

  • 49. The pathophysiology of tardive dyskinesia.
    Klawans HL; Carvey P; Tanner CM; Goetz CG
    J Clin Psychiatry; 1985 Apr; 46(4 Pt 2):38-41. PubMed ID: 2858479
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Unitary dopaminergic receptor composed of cooperatively linked agonist and antagonist sub-unit binding sites.
    Leysen JE
    Commun Psychopharmacol; 1979; 3(6):397-410. PubMed ID: 546588
    [No Abstract]   [Full Text] [Related]  

  • 51. Dopamine receptors in the central nervous system.
    Seeman P; Tedesco JL; Lee T; Chau-Wong M; Muller P; Bowles J; Whitaker PM; McManus C; Tittler M; Weinreich P; Friend WC; Brown GM
    Fed Proc; 1978 Feb; 37(2):131-6. PubMed ID: 414936
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aging and the regulation of striatal dopaminergic mechanisms in mice.
    Randall PK; Severson JA; Finch CE
    J Pharmacol Exp Ther; 1981 Dec; 219(3):695-700. PubMed ID: 7197719
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Long-term treatment with lithium prevents the development of dopamine receptor supersensitivity.
    Pert A; Rosenblatt JE; Sivit C; Pert CB; Bunney WE
    Science; 1978 Jul; 201(4351):171-3. PubMed ID: 566468
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chronic ganglioside treatment counteracts the biochemical signs of dopamine receptor supersensitivity induced by chronic haloperidol treatment.
    Agnati LF; Fuxe K; Benfenati F; Battistini N; Zini I; Toffano G
    Neurosci Lett; 1983 Oct; 40(3):293-7. PubMed ID: 6646502
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multiple daily amphetamine administration decreases both [3H]agonist and [3H]antagonist dopamine receptor binding.
    Sibley DR; Weinberger S; Segal DS; Creese I
    Experientia; 1982 Oct; 38(10):1224-5. PubMed ID: 6890464
    [No Abstract]   [Full Text] [Related]  

  • 56. Animal models of tardive dyskinesia: their use in the search for new treatment methods.
    Goetz CG; Klawans HL; Carvey P
    Mod Probl Pharmacopsychiatry; 1983; 21():5-20. PubMed ID: 6140633
    [No Abstract]   [Full Text] [Related]  

  • 57. Characterization of dopamine autoreceptor and [3H]spiperone binding sites in vitro with classical and novel dopamine receptor agonists.
    Lehmann J; Briley M; Langer SZ
    Eur J Pharmacol; 1983 Mar; 88(1):11-26. PubMed ID: 6133762
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On the mechanism of mergocryptine-induced suppression of dopamine turnover in the rat striatum.
    Hashimoto T; Katsura M; Kuriyama K
    Eur J Pharmacol; 1991 Jun; 198(2-3):121-7. PubMed ID: 1864302
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimal conditions for [3H]apomorphine binding and anomalous equilibrium binding of [3H]apomorphine and [3H]spiperone to rat striatal membranes: involvement of surface phenomena versus multiple binding sites.
    Leysen JE; Gommeren W
    J Neurochem; 1981 Jan; 36(1):201-19. PubMed ID: 7463046
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of single and repeated administration of bromocriptine on monoamine metabolism in rat brain and [3H]spiroperidol binding to striatal membranes.
    Muradas V; Bazan E; Gervas JJ; Mena MA; de Yebenes JG
    Mov Disord; 1986; 1(2):103-12. PubMed ID: 3504236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.