These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 4705661)

  • 21. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport.
    Helgerson AL; Carruthers A
    Biochemistry; 1989 May; 28(11):4580-94. PubMed ID: 2765504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imine-bonding in membrane transport of monosaccharides: invalidity of kinetic evidence.
    LeFevre PG
    Science; 1967 Oct; 158(3798):274-5. PubMed ID: 6053887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The kinetic parameters of the monosaccharide transfer system of the human erythrocyte.
    Levine M; Stein WD
    Biochim Biophys Acta; 1966 Sep; 127(1):179-93. PubMed ID: 5970872
    [No Abstract]   [Full Text] [Related]  

  • 24. A simple test for the sidedness of binding of transport inhibitors.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1990 Nov; 1030(1):24-31. PubMed ID: 2265190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A microfluorimetric study of translational diffusion in erythrocyte membranes.
    Peters R; Peters J; Tews KH; Bähr W
    Biochim Biophys Acta; 1974 Nov; 367(3):282-94. PubMed ID: 4429678
    [No Abstract]   [Full Text] [Related]  

  • 26. The kinetics of selective biological transport. 3. Erythrocyte-monosaccharide transport data.
    Miller DM
    Biophys J; 1968 Nov; 8(11):1329-38. PubMed ID: 5696215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The "dimeriser" hypothesis for sugar permeation through red cell membrane: reinvestigation of original evidence.
    LeFevre PG
    Biochim Biophys Acta; 1966 Jul; 120(3):395-405. PubMed ID: 5966541
    [No Abstract]   [Full Text] [Related]  

  • 28. Quantitative predictions of a noncarrier model for glucose transport across the human red cell membrane.
    Lieb WR; Stein WD
    Biophys J; 1970 Jul; 10(7):585-609. PubMed ID: 5449913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human erythrocyte ghosts: relationship between membrane permeability and binding kinetics of the fluorescent probe 1-anilinonaphthalene-8-sulphonate.
    Radda GK; Smith DS
    Biochim Biophys Acta; 1973 Aug; 318(2):197-204. PubMed ID: 4745317
    [No Abstract]   [Full Text] [Related]  

  • 30. Evidence against the involvement of mutarotase in the D-glucose uptake activity of isolated human erythrocyte membranes.
    Kahlenberg A; Miller G
    Can J Biochem; 1972 Sep; 50(9):1028-30. PubMed ID: 5073273
    [No Abstract]   [Full Text] [Related]  

  • 31. A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red blood cell.
    Eilam Y; Stein WD
    Biochim Biophys Acta; 1972 Apr; 266(1):161-73. PubMed ID: 5041086
    [No Abstract]   [Full Text] [Related]  

  • 32. A two-site model for sodium transport in rabbit erythrocytes.
    Gardner JD; Shibolet S; Ginzler ER
    Biochem Biophys Res Commun; 1972 Feb; 46(3):1361-7. PubMed ID: 5012171
    [No Abstract]   [Full Text] [Related]  

  • 33. Regulation of sugar transport in avian erythrocytes.
    Wood RE; Morgan HE
    J Biol Chem; 1969 Mar; 244(6):1451-60. PubMed ID: 5773049
    [No Abstract]   [Full Text] [Related]  

  • 34. High affinity calcium binding sites on erythrocyte membrane proteins. Use of lanthanides as fluorescent probes.
    Mikkelsen RB; Wallach DF
    Biochim Biophys Acta; 1974 Sep; 363(2):211-8. PubMed ID: 4416988
    [No Abstract]   [Full Text] [Related]  

  • 35. Oxygen channels of erythrocyte membrane.
    Ivanov II; Loktyushkin AV; Gus'kova RA; Vasil'ev NS; Fedorov GE; Rubin AB
    Dokl Biochem Biophys; 2007; 414():137-40. PubMed ID: 17695321
    [No Abstract]   [Full Text] [Related]  

  • 36. Reversible association of cytochalasin B with the human erythrocyte membrane. Inhibition of glucose transport and the stoichiometry of cytochalasin binding.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Oct; 323(2):207-19. PubMed ID: 4752283
    [No Abstract]   [Full Text] [Related]  

  • 37. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
    Cloherty EK; Sultzman LA; Zottola RJ; Carruthers A
    Biochemistry; 1995 Nov; 34(47):15395-406. PubMed ID: 7492539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sugar-inhibited amino acid transport in the human erythrocyte.
    RIESER P
    Exp Cell Res; 1961 Jun; 24():165-7. PubMed ID: 13741564
    [No Abstract]   [Full Text] [Related]  

  • 39. Tracer kinetic analysis of phosphate incorporation of erythrocytes in vitro. II. Model analysis of the system with the ATP pool not in steady state.
    Latzkovits L; Fajszi C; Szentistványi I
    Acta Biochim Biophys Acad Sci Hung; 1972; 7(4):307-14. PubMed ID: 4672031
    [No Abstract]   [Full Text] [Related]  

  • 40. Effects of calcium on potassium and water transport in human erythrocyte ghosts.
    Colombe BW; Macey RI
    Biochim Biophys Acta; 1974 Sep; 363(2):226-39. PubMed ID: 4418663
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.