These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 4706014)

  • 1. Evolution, in mouse brain microsomes, of lipids and their constituents during myelination.
    Bourre JM; Pollet SA; Daudu OL; Baumann NA
    Brain Res; 1973 Mar; 51():225-39. PubMed ID: 4706014
    [No Abstract]   [Full Text] [Related]  

  • 2. Biosynthesis of lignoceric acid from behenyl0COA in mouse brain microsomes. Comparison between normal and Quaking mutant.
    Bourre JM; Daudu OL; Baymann NA
    Biochem Biophys Res Commun; 1975 Apr; 63(4):1027-34. PubMed ID: 236752
    [No Abstract]   [Full Text] [Related]  

  • 3. Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid.
    Morell P; Radin NS
    Biochemistry; 1969 Feb; 8(2):506-12. PubMed ID: 5793706
    [No Abstract]   [Full Text] [Related]  

  • 4. Types of fatty acids in brain lipids, their derivation and function. In: lipids, malnutrition & the developing brain.
    Mead JF; Dhopeshwarkar GA
    Ciba Found Symp; 1971; ():59-72. PubMed ID: 4949880
    [No Abstract]   [Full Text] [Related]  

  • 5. Biosynthesis of the myelin sheath. In: lipids, malnutrition & the developing brain.
    Davison AN
    Ciba Found Symp; 1971; ():73-90. PubMed ID: 4121674
    [No Abstract]   [Full Text] [Related]  

  • 6. Brain microsomal fatty acid elongation is increased in abcd1-deficient mouse during active myelination phase.
    Morita M; Kawamichi M; Shimura Y; Kawaguchi K; Watanabe S; Imanaka T
    Metab Brain Dis; 2015 Dec; 30(6):1359-67. PubMed ID: 26108493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low degree of fatty acid unsaturation leads to high resistance to lipid peroxidation in mitochondria and microsomes of different organs of quail (Coturnix coturnix japonica).
    Gutiérrez AM; Reboredo GR; Mosca SM; Catalá A
    Mol Cell Biochem; 2006 Jan; 282(1-2):109-15. PubMed ID: 16317518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proceedings: (14C)-labelling and fractionation of lipids in bovine glomerular basement membrane.
    Kibel G; Heilhecker A; van Bruchhausen F
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(Suppl):suppl 282:R46. PubMed ID: 4367352
    [No Abstract]   [Full Text] [Related]  

  • 9. Changes in the lipid and fatty acid composition of developing rabbit brain.
    Odutuga AA; Carey EM; Prout RE
    Biochim Biophys Acta; 1973 Aug; 316(2):115-23. PubMed ID: 4355013
    [No Abstract]   [Full Text] [Related]  

  • 10. An allometric study of fatty acids and sensitivity to lipid peroxidation of brain microsomes and mitochondria isolated from different bird species.
    Gutiérrez AM; Reboredo GR; Mosca SM; Catalá A
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Jul; 150(3):359-65. PubMed ID: 18508398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the biosynthesis of cerebrosides from 2-hydroxy acid ceramides: use of deuterium labeled substrate and multiple ion detector.
    Hammarström S; Samuelsson B
    Biochem Biophys Res Commun; 1970 Nov; 41(4):1027-35. PubMed ID: 5477216
    [No Abstract]   [Full Text] [Related]  

  • 12. Analysis of lipid abnormalities in CF mice.
    Freedman SD; Blanco PG; Shea JC; Alvarez JG
    Methods Mol Med; 2002; 70():517-24. PubMed ID: 11917547
    [No Abstract]   [Full Text] [Related]  

  • 13. Incorporation of mannose into mouse brain lipid.
    Zatz M; Barondes SH
    Biochem Biophys Res Commun; 1969 Aug; 36(3):511-7. PubMed ID: 5822406
    [No Abstract]   [Full Text] [Related]  

  • 14. [Biochemistry of brain lipids (especially fatty acids). In situ synthesis and exogenous origin during development. Various aspects of nutritional effects].
    Bourre JM
    Reprod Nutr Dev (1980); 1982; 22(1B):179-91. PubMed ID: 6760299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mediation of transfer of (1- 14 C) polyenoic acids between microsomes and mitochondria of developing rat brain by a soluble macromolecular factor.
    Liepkalns V; Bernsohn J
    Biochem Biophys Res Commun; 1972 Jun; 47(5):1067-73. PubMed ID: 5029858
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparison of the acylation of sn-glycerol 3-phosphate and membrane-bound lipid in the microsomal fraction from rabbit brain throughout maturation.
    Carey EM
    Biochim Biophys Acta; 1975 Aug; 398(2):231-43. PubMed ID: 1182136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fatty acid composition and lipid peroxidation in brain microsomes of albino rats with alloxan diabetes].
    Martikian AR; Vartanian GS; Karagezian KG
    Vopr Med Khim; 1985; 31(3):86-7. PubMed ID: 4024536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain lipids in experimental tuberculosis in chicken.
    Malhotra HC; Khorana S; Misra UK; Venkitasubramanian TA
    Indian J Biochem; 1967 Dec; 4(4):219-22. PubMed ID: 4233074
    [No Abstract]   [Full Text] [Related]  

  • 19. Condensation activity for polyunsaturated fatty acids with malonyl-CoA in rat brain microsomes. Characteristics and developmental change.
    Yoshida S; Bourre JM
    Biochim Biophys Acta; 1992 Feb; 1123(3):316-25. PubMed ID: 1536871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of lipid-linked sugars in rat liver and brain microsomes.
    Jankowski W; Chojnacki T
    Biochim Biophys Acta; 1972 Jan; 260(1):93-7. PubMed ID: 5012457
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.