These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 470626)
1. [Efficiency of glucose utilization by Gluconobacter oxydans]. Uspenskaia SN; Loĭtsianskaia MS Mikrobiologiia; 1979; 48(3):400-5. PubMed ID: 470626 [TBL] [Abstract][Full Text] [Related]
2. [Auxotrophism dictated by the source of energy in Acetobacter aceti]. Monard D; Hütter R; Ettlinger L Pathol Microbiol (Basel); 1967; 30(6):966-71. PubMed ID: 5591333 [No Abstract] [Full Text] [Related]
3. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid. Elfari M; Ha SW; Bremus C; Merfort M; Khodaverdi V; Herrmann U; Sahm H; Görisch H Appl Microbiol Biotechnol; 2005 Mar; 66(6):668-74. PubMed ID: 15735967 [TBL] [Abstract][Full Text] [Related]
4. [Raffinose metabolism in Gluconobacter oxydans]. Loĭtsianskaia MS; Uspenskaia SN Mikrobiologiia; 1976; 45(2):229-33. PubMed ID: 933868 [TBL] [Abstract][Full Text] [Related]
5. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Merfort M; Herrmann U; Bringer-Meyer S; Sahm H Appl Microbiol Biotechnol; 2006 Nov; 73(2):443-51. PubMed ID: 16820953 [TBL] [Abstract][Full Text] [Related]
6. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation. Merfort M; Herrmann U; Ha SW; Elfari M; Bringer-Meyer S; Görisch H; Sahm H Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291 [TBL] [Abstract][Full Text] [Related]
7. Fermentation of glucose by Acetobacter melanogenus. Stroshane RM; Perlman D Biotechnol Bioeng; 1977 Apr; 19(4):459-65. PubMed ID: 15673 [TBL] [Abstract][Full Text] [Related]
8. Glucose oxidation by Gluconobacter oxydans: characterization in shaking-flasks, scale-up and optimization of the pH profile. Silberbach M; Maier B; Zimmermann M; Büchs J Appl Microbiol Biotechnol; 2003 Jul; 62(1):92-8. PubMed ID: 12835926 [TBL] [Abstract][Full Text] [Related]
9. Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343. Herrmann U; Merfort M; Jeude M; Bringer-Meyer S; Sahm H Appl Microbiol Biotechnol; 2004 Mar; 64(1):86-90. PubMed ID: 14564486 [TBL] [Abstract][Full Text] [Related]
10. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria. Sainz F; Navarro D; Mateo E; Torija MJ; Mas A Int J Food Microbiol; 2016 Apr; 222():40-7. PubMed ID: 26848948 [TBL] [Abstract][Full Text] [Related]
11. [Ethanol as source of energy but not of carbon in Acetomonas oxydans]. Glättli H; Ettlinger L Pathol Microbiol (Basel); 1967; 30(6):918-23. PubMed ID: 5591329 [No Abstract] [Full Text] [Related]
12. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans. Meyer M; Schweiger P; Deppenmeier U Appl Microbiol Biotechnol; 2013 Apr; 97(8):3457-66. PubMed ID: 22790543 [TBL] [Abstract][Full Text] [Related]
13. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans. Hölscher T; Schleyer U; Merfort M; Bringer-Meyer S; Görisch H; Sahm H J Mol Microbiol Biotechnol; 2009; 16(1-2):6-13. PubMed ID: 18957858 [TBL] [Abstract][Full Text] [Related]
14. Effect of ammonium and amino acids on the growth of selected strains of Gluconobacter and Acetobacter. Sainz F; Mas A; Torija MJ Int J Food Microbiol; 2017 Feb; 242():45-52. PubMed ID: 27870985 [TBL] [Abstract][Full Text] [Related]
15. Production of L-ribulose by dehydrogenation of ribitol with Gluconobacter oxydans. De Muynck C; Pereira C; Soetaert W; Vandamme E Commun Agric Appl Biol Sci; 2005; 70(2):101-4. PubMed ID: 16366284 [No Abstract] [Full Text] [Related]
16. [Use of NMR spectroscopy in studies of sorbitol and glucose transformation by Gluconobacter oxydans]. Kitova aE; Reshetilov AN; Kutyshenko VP; Kutyshenko AV Biofizika; 2006; 51(2):306-9. PubMed ID: 16637338 [TBL] [Abstract][Full Text] [Related]
17. Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for L-ribulose production. Kylmä AK; Granström T; Leisola M Appl Microbiol Biotechnol; 2004 Feb; 63(5):584-91. PubMed ID: 12898066 [TBL] [Abstract][Full Text] [Related]
18. Dehydrogenation of ribitol with Gluconobacter oxydans: production and stability of L-ribulose. De Muynck C; Pereira C; Soetaert W; Vandamme E J Biotechnol; 2006 Sep; 125(3):408-15. PubMed ID: 16650498 [TBL] [Abstract][Full Text] [Related]
19. [Effect on glucose on levansucrase synthesis by Gluconobacter oxydans]. Tkachenko AA; Loĭtsianskaia MS Mikrobiologiia; 1976; 45():450-4. PubMed ID: 1032986 [TBL] [Abstract][Full Text] [Related]
20. Unique glucose oxidation catalysis of Gluconobacter oxydans constitutes an efficient cellulosic gluconic acid fermentation free of inhibitory compounds disturbance. Zhou P; Yao R; Zhang H; Bao J Biotechnol Bioeng; 2019 Sep; 116(9):2191-2199. PubMed ID: 31081135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]