These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4708378)

  • 41. On the mode of activation of the catalytically essential sulfhydryl group of papain.
    Polgár L
    Eur J Biochem; 1973 Feb; 33(1):104-9. PubMed ID: 4691346
    [No Abstract]   [Full Text] [Related]  

  • 42. On the mechanism of action of streptococcal proteinase. II. Comparison of the kinetics of proteinase- and papain-catalyzed hydrolysis of N-acylamino acid esters.
    Kortt AA; Liu TY
    Biochemistry; 1973 Jan; 12(2):328-37. PubMed ID: 4683008
    [No Abstract]   [Full Text] [Related]  

  • 43. A STUDY OF SOME THIOL ESTER HYDROLYSES AS MODELS FOR THE DEACYLATION STEP OF PAPAIN-CATALYSED HYDROLYSES.
    LOWE G; WILLIAMS A
    Biochem J; 1965 Jul; 96(1):194-8. PubMed ID: 14343130
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermodynamics of the binding of haptens to rabbit anit-2,4-dinitrophenyl antibodies.
    Barisas BG; Sturtevant JM; Singer SJ
    Biochemistry; 1971 Jul; 10(15):2816-21. PubMed ID: 5114526
    [No Abstract]   [Full Text] [Related]  

  • 45. A re-appraisal of the structural basis of stereochemical recognition in papain. Insensitivity of binding-site-catalytic-site signalling to P2-chirality in a time-dependent inhibition.
    Templeton W; Kowlessur D; Thomas EW; Topham CM; Brocklehurst K
    Biochem J; 1990 Mar; 266(3):645-51. PubMed ID: 2327953
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ethoxyformylation of proteins. Reaction of ethoxyformic anhydride with alpha-chymotrypsin, pepsin, and pancreatic ribonuclease at pH 4.
    Melchior WB; Fahrney D
    Biochemistry; 1970 Jan; 9(2):251-8. PubMed ID: 4904867
    [No Abstract]   [Full Text] [Related]  

  • 47. Consequences of molecular recognition in the S1-S2 intersubsite region of papain for catalytic-site chemistry. Change in pH-dependence characteristics and generation of an inverse solvent kinetic isotope effect by introduction of a P1-P2 amide bond into a two-protonic-state reactivity probe.
    Brocklehurst K; Kowlessur D; Patel G; Templeton W; Quigley K; Thomas EW; Wharton CW; Willenbrock F; Szawelski RJ
    Biochem J; 1988 Mar; 250(3):761-72. PubMed ID: 2839145
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The modification of essential carboxylic acid side chains of trypsin.
    Feinstein G; Bodlaender P; Shaw E
    Biochemistry; 1969 Dec; 8(12):4949-55. PubMed ID: 5365788
    [No Abstract]   [Full Text] [Related]  

  • 49. A kinetic analysis of the papain-catalyzed hydrolysis of alpha-N-benzoyl-L-citrulline methyl ester.
    Cohen W; Petra PH
    Biochemistry; 1967 Apr; 6(4):1047-53. PubMed ID: 6032452
    [No Abstract]   [Full Text] [Related]  

  • 50. Azapeptides as inhibitors and active site titrants for cysteine proteinases.
    Xing R; Hanzlik RP
    J Med Chem; 1998 Apr; 41(8):1344-51. PubMed ID: 9548822
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evidence for a two-state transition in papain that may have no close analogue in ficin. Differences in the disposition of cationic sites and hydrophobic binding areas in the active centres of papain and ficin.
    Brocklehurst K; Malthouse JP
    Biochem J; 1980 Dec; 191(3):707-18. PubMed ID: 7025834
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Titrimetric study of the hydrolysis of the ethyl ester of benzoylarginine by papain].
    de Roeck-Holtzhauer Y; Gauthier J
    Ann Pharm Fr; 1967 Dec; 25(12):803-6. PubMed ID: 5611061
    [No Abstract]   [Full Text] [Related]  

  • 53. Sulfonic esters of carbohydrates. 1.
    Ball DH; Parrish FW
    Adv Carbohydr Chem Biochem; 1968; 23():233-80. PubMed ID: 4882956
    [No Abstract]   [Full Text] [Related]  

  • 54. [Carcinogenic alkylating substances. IV. 1,3-propane sultone and 1,4-butane sultone].
    Druckrey H; Kruse H; Preussmann R; Ivankovic S; Landschütz C; Gimmy J
    Z Krebsforsch; 1970 Nov; 75(1):69-84. PubMed ID: 4325298
    [No Abstract]   [Full Text] [Related]  

  • 55. Evidence for histidine in the active site of papain.
    Husain SS; Lowe G
    Biochem J; 1968 Aug; 108(5):855-9. PubMed ID: 5673530
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Tryptic hydrolysis of the esters of N-(alpha)-tosyl derivatives of lysine and arginine].
    Iurganova LG
    Biokhimiia; 1969; 34(1):55-8. PubMed ID: 5801326
    [No Abstract]   [Full Text] [Related]  

  • 57. Preparation of Fv fragment from the mouse myeloma XRPC-25 immunoglobulin possessing anti-dinitrophenyl activity.
    Sharon J; Givol D
    Biochemistry; 1976 Apr; 15(7):1591-4. PubMed ID: 4096
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PAPAIN-CATALYSED HYDROLYSIS OF SOME HIPPURIC ESTERS. A NEW MECHANISM FOR PAPAIN-CATALYSED HYDROLYSIS.
    LOWE G; WILLIAMS A
    Biochem J; 1965 Jul; 96(1):199-204. PubMed ID: 14346990
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interaction of human plasminogen with deoxyribonucleic acids. II. Protection of human plasminogen against catalytic activation with deoxyribonucleic acids.
    Hakim AA
    Enzymologia; 1970 Jan; 38(1):57-81. PubMed ID: 4244649
    [No Abstract]   [Full Text] [Related]  

  • 60. A kinetic analysis of the enhanced catalytic efficiency of papain modified by 2-hydroxy-5-nitrobenzylation.
    Mole JE; Horton HR
    Biochemistry; 1973 Dec; 12(26):5285-9. PubMed ID: 4760493
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.