These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 470944)

  • 1. [Mixed aggregation of pigments with participation of bacteriochlorophyll].
    Zen'kevich ZI; Kochubeev GA; Losev AP; Gurinovich GP
    Mol Biol (Mosk); 1979; 13(4):888-98. PubMed ID: 470944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Spectral-luminescent properties of separate aggregated forms of pigments in solutions].
    Zen'kevich EI; Kochubeev GA; Losev AP; Gurinovich GP
    Mol Biol (Mosk); 1978; 12(5):1002-11. PubMed ID: 739987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Aggregation of 4-vinyl-protochlerophyll and protochlorophyll in solutions].
    Zen'kevich EI; Losev AP
    Mol Biol (Mosk); 1976; 10(2):294-304. PubMed ID: 940552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Relationship between chlorophyll concentration and the energy reaction between protochlorophyll and chlorophyll in mixed associations].
    Zen'kevich EI; Kochubeev GA; Losev AP; Gurinovich GP
    Mol Biol (Mosk); 1977; 11(5):1039-56. PubMed ID: 618338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Characteristics of mixed association and deactivation of electron excitation in chlorophyll-pheophytin complexes].
    Zen'kevich EI; Zen'kevich TV
    Mol Biol (Mosk); 1984; 18(3):667-75. PubMed ID: 6472265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Regularities of aggregation and excitation electronic energy transfer in associates of pheophytin and its mesoderivatives].
    Zen'kevich EI; Sarzhevkaia MV; Vitovtseva TV; Kochubeev GA
    Mol Biol (Mosk); 1981; 15(1):145-53. PubMed ID: 7335073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Migration of electron excitation energy in mixed associates of chlorophyll and its derivatives].
    Zen'kevich EI; Losev AP; Gurinovich GP
    Mol Biol (Mosk); 1975; 9(4):516-23. PubMed ID: 1214795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodospirillum sphaeroides using reconstitution methodology with bacteriochlorophyll analogs.
    Davis CM; Parkes-Loach PS; Cook CK; Meadows KA; Bandilla M; Scheer H; Loach PA
    Biochemistry; 1996 Mar; 35(9):3072-84. PubMed ID: 8608148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates. Effects of peripheral substituents on the low-frequency vibrational characteristics.
    Diers JR; Zhu Y; Blankenship RE; Bocian DF
    J Phys Chem; 1996 May; 100(20):8573-9. PubMed ID: 11539301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral effects of aggregation of protochlorophyll pigments.
    Bystrova MI; Lang F; Krasnovskii AA
    Mol Biol; 1972; 6(1):61-8. PubMed ID: 5086743
    [No Abstract]   [Full Text] [Related]  

  • 11. Characterization of 3-Acetyl Chlorophyll a and 3-Acetyl Protochlorophyll a Accommodated in the B800 Binding Sites of Photosynthetic Light-Harvesting Complex 2 in the Purple Photosynthetic Bacterium Rhodoblastus acidophilus.
    Saga Y; Miyagi K
    Photochem Photobiol; 2018 Jul; 94(4):698-704. PubMed ID: 29569330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Absorption and fluorescence spectra and molecular organization of bacteriochlorophyll in reaction centers of Rhodopseudomonas spheroides].
    Stadnichuk IN; Lukashev EP
    Mol Biol (Mosk); 1982; 16(5):991-7. PubMed ID: 6755225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecular arrangement of protochlorophyll aggregated forms in solid films].
    Bystrova MI; Safronova IA; Krasnovskiĭ AA
    Mol Biol (Mosk); 1982; 16(2):291-301. PubMed ID: 7070384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of stereochemistry of bacteriochlorophyll gF and 8(1)-hydroxy-chlorophyll aF from Heliobacterium modesticaldum.
    Mizoguchi T; Oh-oka H; Tamiaki H
    Photochem Photobiol; 2005; 81(3):666-73. PubMed ID: 15745422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of carotenoids and monogalactosyl diglyceride on bacteriochlorophyll c aggregates in aqueous buffer: implications for the self-assembly of chlorosomes.
    Klinger P; Arellano JB; Vácha F; Hála J; Psencík J
    Photochem Photobiol; 2004; 80(3):572-8. PubMed ID: 15623345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic studies on self-aggregation of bacteriochlorophyll-e in nonpolar organic solvents: effects of stereoisomeric configuration at the 3(1)-position and alkyl substituents at the 8(1)-position.
    Saga Y; Matsuura K; Tamiaki H
    Photochem Photobiol; 2001 Jul; 74(1):72-80. PubMed ID: 11460540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Spectral properties and structure of bacteriopheophytin a dimer].
    Shubin VV; Drozdova NN; Vychegzhanina IV; Karapetian NV; Kracnovskiĭ AA
    Mol Biol (Mosk); 1981; 15(2):359-67. PubMed ID: 7242535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral equilibration and primary photochemistry in Heliobacillus mobilis at cryogenic temperature.
    Liebl U; Lambry JC; Breton J; Martin JL; Vos MH
    Biochemistry; 1997 May; 36(19):5912-20. PubMed ID: 9153433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophysical consequences of coupling bacteriochlorophyll a with serine and its resulting solubility in water.
    Eichwurzel I; Stiel H; Teuchner K; Leupold D; Scheer H; Salomon Y; Scherz A
    Photochem Photobiol; 2000 Aug; 72(2):204-9. PubMed ID: 10946574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Molecular mechanism of self-assembly of aggregated bacteriochlorophyll c].
    Bystrova MI; Mal'gosheva IN; Krasnovskiĭ AA
    Mol Biol (Mosk); 1979; 13(3):582-94. PubMed ID: 460204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.