These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 4709982)

  • 1. Hypoxic changes in brain -hydroxybutyrate-acetoacetate ratio: phylogenetic and developmental considerations.
    Sylvia AL; Miller AT
    Comp Biochem Physiol B; 1973 Mar; 44(3):837-41. PubMed ID: 4709982
    [No Abstract]   [Full Text] [Related]  

  • 2. The in vivo utilization of acetoacetate, D-(-)-3-hydroxybutyrate, and glucose for lipid synthesis in brain in the 18-day-old rat. Evidence for an acetyl-CoA bypass for sterol synthesis.
    Webber RJ; Edmond J
    J Biol Chem; 1979 May; 254(10):3912-20. PubMed ID: 438167
    [No Abstract]   [Full Text] [Related]  

  • 3. Brain and liver intracellular compartmental redox states in hypoxia, hypocapnia and hypercapnia.
    Miller AT; Lai FM
    Adv Exp Med Biol; 1972; 33(0):353-61. PubMed ID: 4152799
    [No Abstract]   [Full Text] [Related]  

  • 4. Utilization of L(+)-3-hydroxybutyrate, D(-)-3-hydroxybutyrate, acetoacetate, and glucose for respiration and lipid synthesis in the 18-day-old rat.
    Webber RJ; Edmond J
    J Biol Chem; 1977 Aug; 252(15):5222-6. PubMed ID: 885847
    [No Abstract]   [Full Text] [Related]  

  • 5. Acetoacetate and D-(-)-beta-hydroxybutyrate as precursors for sterol synthesis by calf oligodendrocytes in suspension culture: extramitochondrial pathway for acetoacetate metabolism.
    Pleasure D; Lichtman C; Eastman S; Lieb M; Abramsky O; Silberberg D
    J Neurochem; 1979 May; 32(5):1447-50. PubMed ID: 35588
    [No Abstract]   [Full Text] [Related]  

  • 6. Formation and utilization of acetoacetate and D-3-hydroxybutyrate by various tissues of the adult pigeon (Columba livia).
    Bailey E; Horne JA
    Comp Biochem Physiol B; 1972 Aug; 42(4):659-67. PubMed ID: 5075781
    [No Abstract]   [Full Text] [Related]  

  • 7. Brain metabolism during fasting.
    Owen OE; Morgan AP; Kemp HG; Sullivan JM; Herrera MG; Cahill GF
    J Clin Invest; 1967 Oct; 46(10):1589-95. PubMed ID: 6061736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative effect of fasting on acetoacetate and D-3-hydroxybutyrate metabolism in the newborn chick.
    Linares A; Diaz R; Caamaño GJ; Gonzalez FJ; Garcia-Peregrin E
    Biochem Int; 1992 Dec; 28(4):683-91. PubMed ID: 1482404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipogenesis from ketone bodies in rat brain. Evidence for conversion of acetoacetate into acetyl-coenzyme A in the cytosol.
    Patel MS; Owen OE
    Biochem J; 1976 Jun; 156(3):603-7. PubMed ID: 949342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetoacetate metabolism in infant and adult rat brain in vitro.
    Ito T; Quastel JH
    Biochem J; 1970 Feb; 116(4):641-55. PubMed ID: 5435493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of beta-hydroxybutyrate and acetoacetate oxidation by inorganic phosphate and adenosine-5'-diphosphate in heart mitochondria.
    Hatefi Y; Fakouh T
    Arch Biochem Biophys; 1968 Apr; 125(1):114-25. PubMed ID: 5649508
    [No Abstract]   [Full Text] [Related]  

  • 12. Relationship of blood acetoacetate and 3-hydroxybutyrate in diabetes.
    Stephens JM; Sulway MJ; Watkins PJ
    Diabetes; 1971 Jul; 20(7):485-9. PubMed ID: 4997333
    [No Abstract]   [Full Text] [Related]  

  • 13. Renal conservation of ketone bodies during starvation.
    Sapir DG; Owen OE
    Metabolism; 1975 Jan; 24(1):23-33. PubMed ID: 234169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxic changes in brain hexokinase distribution: phylogenetic and developmental considerations.
    Broniszewska-Ardelt B; Miller AT Jr+MILLER AT
    Comp Biochem Physiol B; 1974 Sep; 49(1B):151-6. PubMed ID: 4413751
    [No Abstract]   [Full Text] [Related]  

  • 15. Cerebral mitochondrial redox states during metabolic stress in the immature rat.
    Vannucci RC; Brucklacher RM
    Brain Res; 1994 Aug; 653(1-2):141-7. PubMed ID: 7982046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ketone bodies serve as important precursors of brain lipids in the developing rat.
    Yeh YY; Streuli VL; Zee P
    Lipids; 1977 Nov; 12(11):957-64. PubMed ID: 927049
    [No Abstract]   [Full Text] [Related]  

  • 17. Incorporation of label from D- -hydroxy( 14 C)butyrate and (3- 14 C)acetoacetate into amino acids in rat brain in vivo.
    Cremer JE
    Biochem J; 1971 Apr; 122(2):135-8. PubMed ID: 5117566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transport of ketone bodies into the brain of the rat (in vivo).
    Daniel PM; Love ER; Moorhouse SR; Pratt OE
    J Neurol Sci; 1977 Oct; 34(1):1-13. PubMed ID: 915530
    [No Abstract]   [Full Text] [Related]  

  • 19. Competition among oxidizable substrates in brains of young and adult rats. Dissociated cells.
    Roeder LM; Tildon JT; Holman DC
    Biochem J; 1984 Apr; 219(1):131-5. PubMed ID: 6426469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Content of pyridine nucleotides and some metabolites in rat kidney cortex during normal oxygen tension and anoxia].
    Zwiebel R; Wiechmann J; Höhmann B; Kinne R
    Hoppe Seylers Z Physiol Chem; 1970 Jul; 351(7):854-64. PubMed ID: 4393500
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.