BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4710056)

  • 1. X-ray photoelectron spectroscopic studies on the electronic structures of porphyrin and phthalocyanine compounds.
    Zeller MV; Hayes RG
    J Am Chem Soc; 1973 Jun; 95(12):3855-60. PubMed ID: 4710056
    [No Abstract]   [Full Text] [Related]  

  • 2. A discrete supramolecular conglomerate composed of two saddle-distorted zinc(II)-phthalocyanine complexes and a doubly protonated porphyrin with saddle distortion undergoing efficient photoinduced electron transfer.
    Kojima T; Honda T; Ohkubo K; Shiro M; Kusukawa T; Fukuda T; Kobayashi N; Fukuzumi S
    Angew Chem Int Ed Engl; 2008; 47(35):6712-6. PubMed ID: 18655209
    [No Abstract]   [Full Text] [Related]  

  • 3. Heteroleptic Tetrapyrrole-Fused Dimeric and Trimeric Skeletons with Unusual Non-Frustrated Fluorescence.
    Zhang Y; Oh J; Wang K; Chen C; Cao W; Park KH; Kim D; Jiang J
    Chemistry; 2016 Mar; 22(13):4492-9. PubMed ID: 26879243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-range electron transfer in zinc-phthalocyanine-oligo(phenylene-ethynylene)-based donor-bridge-acceptor dyads.
    Göransson E; Boixel J; Fortage J; Jacquemin D; Becker HC; Blart E; Hammarström L; Odobel F
    Inorg Chem; 2012 Nov; 51(21):11500-12. PubMed ID: 23050927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic Spectroscopy of Phthalocyanine and Porphyrin Derivatives in Superfluid Helium Nanodroplets.
    Slenczka A
    Molecules; 2017 Jul; 22(8):. PubMed ID: 28757568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transfer in zinc porphyrin-phthalocyanine heterotrimer and heterononamer studied by fluorescence resonance energy transfer (FRET).
    Durmuş M; Chen JY; Zhao ZX; Nyokong T
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun; 70(1):42-9. PubMed ID: 17709284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic properties of CuPc and H2Pc: an experimental and theoretical study.
    Nardi MV; Detto F; Aversa L; Verucchi R; Salviati G; Iannotta S; Casarin M
    Phys Chem Chem Phys; 2013 Aug; 15(31):12864-81. PubMed ID: 23807700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 'two-point' bound zinc porphyrin-zinc phthalocyanine-fullerene supramolecular triad for sequential energy and electron transfer.
    KC CB; Ohkubo K; Karr PA; Fukuzumi S; D'Souza F
    Chem Commun (Camb); 2013 Sep; 49(69):7614-6. PubMed ID: 23882466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Photophysical and photochemical processes in molecular complexes of porphyrins with metal chlorides].
    Ksenofontova TS; Dilung II
    Biofizika; 1972; 17(3):401-5. PubMed ID: 5042286
    [No Abstract]   [Full Text] [Related]  

  • 10. Strongly coupled zinc phthalocyanine-tin porphyrin dyad performing ultra-fast single step charge separation over a 34 A distance.
    Fortage J; Göransson E; Blart E; Becker HC; Hammarström L; Odobel F
    Chem Commun (Camb); 2007 Nov; (44):4629-31. PubMed ID: 17989814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Spectral study of ion-radical forms of Mg-etioporphyrin].
    Bobrovskiĭ AP; Kholmogorov VE
    Biofizika; 1974; 19(1):50-6. PubMed ID: 4373086
    [No Abstract]   [Full Text] [Related]  

  • 12. Iron distances in hemoglobin: comparison of x-ray crystallographic and extended x-ray absorption fine structure studies.
    Fermi G; Perutz MF; Shulman RG
    Proc Natl Acad Sci U S A; 1987 Sep; 84(17):6167-8. PubMed ID: 3476938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between the electrocatalytic properties of different metal ion phthalocyanines and porphyrins towards the oxidation of hydroxide.
    De Wael K; Adriaens A
    Talanta; 2008 Feb; 74(5):1562-7. PubMed ID: 18371818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical solar-to-electrical energy-conversion efficiencies of perylene-porphyrin light-harvesting arrays.
    Hasselman GM; Watson DF; Stromberg JR; Bocian DF; Holten D; Lindsey JS; Meyer GJ
    J Phys Chem B; 2006 Dec; 110(50):25430-40. PubMed ID: 17165990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogenated tetraazaporphyrins--old but new core-modified phthalocyanine analogues.
    Fukuda T; Kobayashi N
    Dalton Trans; 2008 Sep; (35):4685-704. PubMed ID: 18728874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational change from a twisted figure-eight to an open-extended structure in doubly fused 36π core-modified octaphyrins triggered by protonation: implication on photodynamics and aromaticity.
    Karthik G; Lim JM; Srinivasan A; Suresh CH; Kim D; Chandrashekar TK
    Chemistry; 2013 Dec; 19(50):17011-20. PubMed ID: 24307363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Merging porphyrins with organometallics: synthesis and applications.
    Suijkerbuijk BM; Klein Gebbink RJ
    Angew Chem Int Ed Engl; 2008; 47(39):7396-421. PubMed ID: 18726980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimerization and bonding of a zinc porphyrin cation radical. Thermodynamics and fast reaction kinetics.
    Fuhrhop JH; Wasser P; Riesner D; Mauzerall D
    J Am Chem Soc; 1972 Nov; 94(23):7996-8001. PubMed ID: 5079960
    [No Abstract]   [Full Text] [Related]  

  • 19. Synthesis and properties of hybrid porphyrin tapes.
    Tanaka T; Lee BS; Aratani N; Yoon MC; Kim D; Osuka A
    Chemistry; 2011 Dec; 17(51):14400-12. PubMed ID: 22120975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Photooxidation reaction of metal complexes of porphyrins at 293 and 77 degrees K].
    Umrikhin VA; Gribova ZP
    Biofizika; 1974; 19(4):640-4. PubMed ID: 4371879
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.