These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 471188)

  • 41. Functional Recovery of Carbon Nanotube/Nafion Nanocomposite in Rat Model of Spinal Cord Injury.
    Imani S; Zagari Z; Rezaei Zarchi S; Jorjani M; Nasri S
    Artif Cells Nanomed Biotechnol; 2016; 44(1):144-9. PubMed ID: 25861814
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preservation and detection of lesion-induced collagenous scar in the CNS depend on the method of tissue processing.
    Hermanns S; Werner Müller H
    Brain Res Brain Res Protoc; 2001 Jun; 7(2):162-7. PubMed ID: 11356383
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Emergence of highly neurofilament-immunoreactive zipper-like axon segments at the transection site in scalpel-cordotomized adult rats.
    Nishio T; Kawaguchi S; Fujiwara H
    Neuroscience; 2008 Jul; 155(1):90-103. PubMed ID: 18571867
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pharmacological Suppression of CNS Scarring by Deferoxamine Reduces Lesion Volume and Increases Regeneration in an In Vitro Model for Astroglial-Fibrotic Scarring and in Rat Spinal Cord Injury In Vivo.
    Vogelaar CF; König B; Krafft S; Estrada V; Brazda N; Ziegler B; Faissner A; Müller HW
    PLoS One; 2015; 10(7):e0134371. PubMed ID: 26222542
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model.
    Cholas RH; Hsu HP; Spector M
    Biomaterials; 2012 Mar; 33(7):2050-9. PubMed ID: 22182744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scar ablation combined with LP/OEC transplantation promotes anatomical recovery and P0-positive myelination in chronically contused spinal cord of rats.
    Zhang SX; Huang F; Gates M; Holmberg EG
    Brain Res; 2011 Jul; 1399():1-14. PubMed ID: 21621749
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spinal axons in central nervous system scar tissue are closely related to laminin-immunoreactive astrocytes.
    Frisén J; Haegerstrand A; Risling M; Fried K; Johansson CB; Hammarberg H; Elde R; Hökfelt T; Cullheim S
    Neuroscience; 1995 Mar; 65(1):293-304. PubMed ID: 7753403
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury.
    Ramer LM; Au E; Richter MW; Liu J; Tetzlaff W; Roskams AJ
    J Comp Neurol; 2004 May; 473(1):1-15. PubMed ID: 15067714
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neural tissue formation within porous hydrogels implanted in brain and spinal cord lesions: ultrastructural, immunohistochemical, and diffusion studies.
    Woerly S; Petrov P; Syková E; Roitbak T; Simonová Z; Harvey AR
    Tissue Eng; 1999 Oct; 5(5):467-88. PubMed ID: 10586102
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A reliable method to reduce collagen scar formation in the lesioned rat spinal cord.
    Hermanns S; Reiprich P; Müller HW
    J Neurosci Methods; 2001 Sep; 110(1-2):141-6. PubMed ID: 11564534
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Basal lamina at the site of spinal cord injury in normal, immunotolerant and immunosuppressed rats.
    Feringa ER; Kowalski TF; Vahlsing HL
    Neurosci Lett; 1985 Mar; 54(2-3):225-30. PubMed ID: 3991061
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord.
    Guest JD; Rao A; Olson L; Bunge MB; Bunge RP
    Exp Neurol; 1997 Dec; 148(2):502-22. PubMed ID: 9417829
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transplantation of fetal spinal cord tissue into the chronically injured adult rat spinal cord.
    Houlé JD; Reier PJ
    J Comp Neurol; 1988 Mar; 269(4):535-47. PubMed ID: 2453536
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord.
    Fouad K; Schnell L; Bunge MB; Schwab ME; Liebscher T; Pearse DD
    J Neurosci; 2005 Feb; 25(5):1169-78. PubMed ID: 15689553
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The meningeal sheath of the regenerating spinal cord of the eel, Anguilla.
    Dervan AG; Roberts BL
    Anat Embryol (Berl); 2003 Sep; 207(2):157-67. PubMed ID: 12856179
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preferential regeneration of spinal axons through the scar in hemisected lamprey spinal cord.
    Lurie DI; Selzer ME
    J Comp Neurol; 1991 Nov; 313(4):669-79. PubMed ID: 1783686
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fetal spinal cord tissue in mini-guidance channels promotes longitudinal axonal growth after grafting into hemisected adult rat spinal cords.
    Bamber NI; Li H; Aebischer P; Xu XM
    Neural Plast; 1999; 6(4):103-21. PubMed ID: 10714264
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spinal cord transection and subsequent treatment with cyclophosphamide or isobutyl-2-cyanocrylate: associated microvascular abnormalities.
    Matthews MA; Onge MF; Faciane CL; Barrett ML; Gelderd JB
    Adv Neurol; 1978; 20():433-42. PubMed ID: 676907
    [No Abstract]   [Full Text] [Related]  

  • 60. Observation of cultured peripheral non-neuronal cells implanted into the transected spinal cord.
    Wrathall JR; Kapoor V; Kao CC
    Acta Neuropathol; 1984; 64(3):203-12. PubMed ID: 6496037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.