These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 4712140)

  • 21. Thiocyanate inhibition of active chloride absorption in Aplysia intestine.
    Gerencser GA
    Biochim Biophys Acta; 1984 Sep; 775(3):389-94. PubMed ID: 6466680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New insights into fish ion regulation and mitochondrion-rich cells.
    Hwang PP; Lee TH
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):479-97. PubMed ID: 17689996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental salinity and sodium and chloride exchanges across the gill of Tilapia mossambica.
    Dharmamba M; Bornancin M; Maetz J
    J Physiol (Paris); 1975 Dec; 70(5):627-35. PubMed ID: 131189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of ion transporter expression in gill mitochondrion-rich cells of eels acclimated to low-Na(+) or-Cl(-) freshwater.
    Tse WK; Chow SC; Lai KP; Au DW; Wong CK
    J Exp Zool A Ecol Genet Physiol; 2011 Aug; 315(7):385-93. PubMed ID: 21455947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of environmental salinity change on osmotic permeability of the isolated gill of the eel, Anguilla anguilla L.
    Isaia J; Hirano T
    J Physiol (Paris); 1976 Jan; 70(6):737-47. PubMed ID: 1263144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ion-deficient environment induces the expression of basolateral chloride channel, ClC-3-like protein, in gill mitochondrion-rich cells for chloride uptake of the tilapia Oreochromis mossambicus.
    Tang CH; Lee TH
    Physiol Biochem Zool; 2011; 84(1):54-67. PubMed ID: 21091354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Branchial chloride cells in sea bass (Dicentrarchus labrax) adapted to fresh water, seawater, and doubly concentrated seawater.
    Varsamos S; Diaz JP; Charmantier G; Flik G; Blasco C; Connes R
    J Exp Zool; 2002 Jun; 293(1):12-26. PubMed ID: 12115915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in the lipid fraction of eel gills after ionizing irradiation in vivo and a shift from fresh to sea water.
    Hansen HJ
    Radiat Res; 1975 May; 62(2):216-24. PubMed ID: 1124276
    [No Abstract]   [Full Text] [Related]  

  • 29. Role of alkaline phosphatase in intestinal water absorption by eels adapted to sea water.
    Oide M
    Comp Biochem Physiol A Comp Physiol; 1973 Dec; 46(4):639-45. PubMed ID: 4148159
    [No Abstract]   [Full Text] [Related]  

  • 30. Microtubules in the "chloride cell" of the gill and disruptive effects of colchicine on the salt balance of the sea water adapted Mugil capito.
    Maetz J; Pic P
    J Exp Zool; 1977 Mar; 199(3):325-38. PubMed ID: 850114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The relation of Na and Cl extrusion in Opsanus beta, the Gulf toadfish, acclimated to seawater.
    Kormanik GA; Evans DH
    J Exp Zool; 1982 Dec; 224(2):187-94. PubMed ID: 7153723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variation in salinity tolerance, gill Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar.
    Hiroi J; McCormick SD
    J Exp Biol; 2007 Mar; 210(Pt 6):1015-24. PubMed ID: 17337714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intestinal water transport and chloride pump in relation to sea-water adaptation of the eel, Anguilla japonica.
    Ando M
    Comp Biochem Physiol A Comp Physiol; 1975 Sep; 52(1):229-33. PubMed ID: 240556
    [No Abstract]   [Full Text] [Related]  

  • 34. Potentiometric evidence for the active transport of sodium and chloride across excised gills of Callinectes sapidus.
    Smith DS; Linton JR
    Comp Biochem Physiol A Comp Physiol; 1971 Jul; 39(3):367-78. PubMed ID: 4150220
    [No Abstract]   [Full Text] [Related]  

  • 35. Chloride transport across isolated frog skin.
    Kristensen P
    Acta Physiol Scand; 1972 Mar; 84(3):338-46. PubMed ID: 5019032
    [No Abstract]   [Full Text] [Related]  

  • 36. Energetics of ion transport in the gills of the crayfish Astacus leptodactylus esch.
    Bielawski J
    Comp Biochem Physiol B; 1971 Jul; 39(3):649-57. PubMed ID: 5122685
    [No Abstract]   [Full Text] [Related]  

  • 37. Humoral inhibition of Na transport by chloride permeability alteration.
    Watlington CO; Taylor LB
    Comp Biochem Physiol A Comp Physiol; 1975 Aug; 51(4):733-6. PubMed ID: 237691
    [No Abstract]   [Full Text] [Related]  

  • 38. Sodium and chloride transport in tadpoles of the bullfrog Rana catesbeiana.
    Alvarado RH; Moody A
    Am J Physiol; 1970 May; 218(5):1510-6. PubMed ID: 5438281
    [No Abstract]   [Full Text] [Related]  

  • 39. [Evidence for a Na+/NH4+ exchange in the gill of trout adapted to sea water: adrenergic control].
    Payan P; Girard JP
    C R Acad Hebd Seances Acad Sci D; 1978 Jan; 286(4):335-8. PubMed ID: 207456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of growth hormone on gill chloride cells in juvenile Atlantic salmon (Salmo salar).
    Prunet P; Pisam M; Claireaux JP; Boeuf G; Rambourg A
    Am J Physiol; 1994 Mar; 266(3 Pt 2):R850-7. PubMed ID: 8160880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.