These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 4712452)

  • 1. [Damage to cochlear microphonics in guinea pigs in dependence on frequencies].
    Benning CD
    Arch Klin Exp Ohren Nasen Kehlkopfheilkd; 1973; 203(3):184-95. PubMed ID: 4712452
    [No Abstract]   [Full Text] [Related]  

  • 2. [Noise-induced cochlear damage following continuous pure-tone exposure in animal experiment].
    Ritter J
    Z Gesamte Hyg; 1979 Feb; 25(2):133-40. PubMed ID: 433343
    [No Abstract]   [Full Text] [Related]  

  • 3. [Peroxidase distribution pattern and cochlear microphonics in the impulse-noise exposed cochlea of the guinea pig (author's transl)].
    Schmidt HP; Biedermann M; Geyer G
    Anat Anz; 1978 Sep; 144(4):383-92. PubMed ID: 742724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tonal patterns of cochlear impairment following intense stimulation with pure tones.
    Suga F; Snow JB; Preston WJ; Glomset JL
    Laryngoscope; 1967 May; 77(5):784-805. PubMed ID: 6026273
    [No Abstract]   [Full Text] [Related]  

  • 5. [A study of damaged acoustic biopotentials in guinea pigs following exposure to white noise].
    Beck C; Benning CD; Stange G
    Acta Otolaryngol; 1975; 79(3-4):297-303. PubMed ID: 806217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic overstimulation and cochlear nonlinearities.
    Cody AR
    Scand Audiol Suppl; 1982; 16():95-109. PubMed ID: 6962518
    [No Abstract]   [Full Text] [Related]  

  • 7. [Impact of sound signals of high intensity on the acoustic analyzer].
    Bogomil'skiĭ MR; D'iakonova IN; Rakhmanova IV; Tikhomirov AM; Golubovskiĭ OA
    Vestn Otorinolaringol; 2006; (3):31-3. PubMed ID: 16912671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of exposure to noise in oil-drilling well sites on cochlea in guinea pigs].
    Ye Q; Ren X; Tang J
    Zhonghua Yu Fang Yi Xue Za Zhi; 1998 Mar; 32(2):103-5. PubMed ID: 10322810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prestin gene expression in the rat cochlea following intense noise exposure.
    Chen GD
    Hear Res; 2006 Dec; 222(1-2):54-61. PubMed ID: 17005342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-specific cochlear damage in guinea pig after exposure to different types of realistic industrial noise.
    Emmerich E; Richter F; Linss V; Linss W
    Hear Res; 2005 Mar; 201(1-2):90-8. PubMed ID: 15721564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Influence of the mobility of the ossicular chain on cochlear changes due to noise: experimental study].
    Mounier-Kuhn P; Haguenauer JP; Bernard PA
    Acta Otorhinolaryngol Belg; 1971; 25(1):107-12. PubMed ID: 5120974
    [No Abstract]   [Full Text] [Related]  

  • 12. [Reaction of peripheral and central acoustic responses of guinea pigs under treatment with sinus wave sonication].
    Benning C; Stange G
    Arch Klin Exp Ohren Nasen Kehlkopfheilkd; 1971; 199(2):529-33. PubMed ID: 5153161
    [No Abstract]   [Full Text] [Related]  

  • 13. Protection against noise trauma by sound conditioning.
    Canlon B
    Ear Nose Throat J; 1997 Apr; 76(4):248-50, 253-5. PubMed ID: 9127524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of sonic booms on hearing and inner ear structure.
    Reinis S; Featherstone JW; Weiss DS
    Scand Audiol Suppl; 1980 Aug; (Suppl 12):163-9. PubMed ID: 6939084
    [No Abstract]   [Full Text] [Related]  

  • 15. [Electrophysiological manifestations of fatigue of middle-ear muscles].
    Veselý C; Faltýnek L
    Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove Suppl; 1970; 13(2):Suppl 2:209+. PubMed ID: 5275642
    [No Abstract]   [Full Text] [Related]  

  • 16. [Animal experimental verification of some electro-cochleographic aspects in human pathology].
    Portmann M; Aran JM; Coste C
    Acta Otolaryngol; 1973; 75(2):132-42. PubMed ID: 4571031
    [No Abstract]   [Full Text] [Related]  

  • 17. Modifications of the nonlinearity of the cochlear microphonic responses produced by noise exposure in the guinea pig.
    Legouix JP; Joannès M
    Hear Res; 1984 Apr; 14(1):39-44. PubMed ID: 6746420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss.
    Kopke RD; Coleman JK; Liu J; Campbell KC; Riffenburgh RH
    Laryngoscope; 2002 Sep; 112(9):1515-32. PubMed ID: 12352659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of exposing DBA/2J mice to a high-frequency augmented acoustic environment on the cochlea and anteroventral cochlear nucleus.
    Willott JF; Bosch JV; Shimizu T; Ding DL
    Hear Res; 2006; 216-217():138-45. PubMed ID: 16497456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endolymphatic leakage in case of acute loss of cochlear microphonics.
    Geyer G; Biedermann M; Schmidt HP
    Experientia; 1978 Mar; 34(3):363-4. PubMed ID: 631267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.