These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 4712575)

  • 21. Growth and plasmid-encoded naphthalene catabolism of Pseudomonas putida in batch culture.
    Boronin AM; Filonov AE; Gayazov RR; Kulakova AN; Mshensky YN
    FEMS Microbiol Lett; 1993 Nov; 113(3):303-7. PubMed ID: 8270196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways.
    Feist CF; Hegeman GD
    J Bacteriol; 1969 Nov; 100(2):869-77. PubMed ID: 5354952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Pseudomonas putida plasmid controlling the initial stages of naphthalene oxidation].
    Boronin AM; Starovoĭtov II; Borisoglebskaia AN; Skriabin GK
    Dokl Akad Nauk SSSR; 1976; 228(4):962-5. PubMed ID: 949929
    [No Abstract]   [Full Text] [Related]  

  • 24. [Silent genes of the catechol oxidation meta-pathway in naphthalene biodegradation plasmids].
    Boronin AM; Kulakova AN; Tsoĭ TV; Kosheleva IA; Kochetkov VV
    Dokl Akad Nauk SSSR; 1988; 299(1):237-40. PubMed ID: 3378500
    [No Abstract]   [Full Text] [Related]  

  • 25. Transmissible plasmid coding for the degradation of benzoate and m-toluate in Pseudomonas arvilla mt-2.
    Wong CL; Dunn NW
    Genet Res; 1974 Apr; 23(2):227-32. PubMed ID: 4424218
    [No Abstract]   [Full Text] [Related]  

  • 26. The regulation of naphthalene metabolism in pseudomonads.
    Shamsuzzaman KM; Barnsley EA
    Biochem Biophys Res Commun; 1974 Sep; 60(2):582-9. PubMed ID: 4423716
    [No Abstract]   [Full Text] [Related]  

  • 27. Preliminary study on relationships among strains forming a bacterial community selected on naphthalene from a marine sediment.
    Tagger S; Truffaut N; Le Petit J
    Can J Microbiol; 1990 Oct; 36(10):676-81. PubMed ID: 2253108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2.
    Fuenmayor SL; Wild M; Boyes AL; Williams PA
    J Bacteriol; 1998 May; 180(9):2522-30. PubMed ID: 9573207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome Analysis of Naphthalene-Degrading
    Kim J; Park W
    J Microbiol Biotechnol; 2018 Feb; 28(2):330-337. PubMed ID: 29169219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of some properties of the 1,2-dihydroxynaphthalene oxygenase and catechol 2,3-oxygenase activities in naphthalene-grown pseudomonas sp. NCIB 9816.
    Catterall FA; Williams PA
    Biochem J; 1972 Jul; 128(3):88P-89P. PubMed ID: 4634854
    [No Abstract]   [Full Text] [Related]  

  • 31. Initial reactions in the oxidation of naphthalene by Pseudomonas putida.
    Jeffrey AM; Yeh HJ; Jerina DM; Patel TR; Davey JF; Gibson DT
    Biochemistry; 1975 Feb; 14(3):575-84. PubMed ID: 234247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic control of enzyme induction in the -ketoadipate pathway of Pseudomonas putida: two-point crosses with a regulatory mutant strain.
    Wu CH; Ornston MK; Ornston LN
    J Bacteriol; 1972 Feb; 109(2):796-802. PubMed ID: 5058453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene.
    Grimm AC; Harwood CS
    Appl Environ Microbiol; 1997 Oct; 63(10):4111-5. PubMed ID: 9327579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterization of naphthalene-catabolic genes and plasmids from oil-contaminated soil by using two cultivation-independent approaches.
    Ono A; Miyazaki R; Sota M; Ohtsubo Y; Nagata Y; Tsuda M
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):501-10. PubMed ID: 17096121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolism of naphthalene by pseudomonads: salicylaldehyde as the first possible inducer in the metabolic pathway.
    Connors MA; Barnsley EA
    J Bacteriol; 1980 Mar; 141(3):1052-4. PubMed ID: 7364724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study of the NAH and TOL catabolic plasmids in Pseudomonas putida.
    Austen RA; Dunn NW
    Aust J Biol Sci; 1977 Aug; 30(4):357-66. PubMed ID: 603460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Nah-genes of Pseudomonas putida: molecular genetic analysis of the plasmid pBS286].
    Tsoĭ TV; Kosheleva IA; Boronin AM
    Genetika; 1986 Nov; 22(11):2702-12. PubMed ID: 3026897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic control of the beta-ketoadipate pathway in Pseudomonas aeruginosa.
    Kemp MB; Hegeman GD
    J Bacteriol; 1968 Nov; 96(5):1488-99. PubMed ID: 4973125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Phage pf16 interrelationships with Pseudomonas putida bacteria. I. Unstable transductants and mutants of Pseudomonas putida PfG1 resistant to phage pf16].
    Kocharian ShM; Arutiunian DG; Alikhanian SI
    Genetika; 1980; 16(2):239-50. PubMed ID: 6928126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidation of substituted phenols by Pseudomonas putida F1 and Pseudomonas sp. strain JS6.
    Spain JC; Gibson DT
    Appl Environ Microbiol; 1988 Jun; 54(6):1399-404. PubMed ID: 3415220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.