These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 4717529)

  • 1. Molecular basis for the action of macrocyclic carriers on passive ionic translocation across lipid bilayer membranes.
    Eisenman G; Szabo G; McLaughlin SG; Ciani SM
    J Bioenerg; 1973 Jan; 4(1):93-148. PubMed ID: 4717529
    [No Abstract]   [Full Text] [Related]  

  • 2. Uncoupler antagonism of valinomycin induced bilayer membrane conductance.
    Kuo KH; Bruner LJ
    Biochem Biophys Res Commun; 1973 Jun; 52(3):1079-85. PubMed ID: 4575781
    [No Abstract]   [Full Text] [Related]  

  • 3. Interaction of valinomycin with cations at the air-water interface.
    Kemp G; Wenner CE
    Biochim Biophys Acta; 1972 Sep; 282(1):1-7. PubMed ID: 5070076
    [No Abstract]   [Full Text] [Related]  

  • 4. Dynamic aspects of carrier-mediated cation transport through membranes.
    Grell E; Oberbäumer I
    Mol Biol Biochem Biophys; 1977; 24():371-413. PubMed ID: 409928
    [No Abstract]   [Full Text] [Related]  

  • 5. The energy barriers to ion transport by nonactin across thin lipid membranes.
    Hladky SB
    Biochim Biophys Acta; 1974 May; 352(1):71-85. PubMed ID: 4859535
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanism of ion transport through lipid bilayer-membranes mediated by peptide cyclo-(D-Val-L-Pro-L-Val-D-Pro).
    Benz R; Gisin BF; Ting-Beall HP; Tosteson DC; Läuger P
    Biochim Biophys Acta; 1976 Dec; 455(3):665-84. PubMed ID: 999934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of membrane curvature in mechanoelectrical transduction: ion carriers nonactin and valinomycin sense changes in integral bending energy.
    Shlyonsky VG; Markin VS; Andreeva I; Pedersen SE; Simon SA; Benos DJ; Ismailov II
    Biochim Biophys Acta; 2006 Nov; 1758(11):1723-31. PubMed ID: 17069752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rate constants of valinomycin-mediated ion transport through thin lipid membranes.
    Stark G; Ketterer B; Benz R; Läuger P
    Biophys J; 1971 Dec; 11(12):981-94. PubMed ID: 4332419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of stirring on the flux of carriers into black lipid membranes.
    Hladky SB
    Biochim Biophys Acta; 1973 May; 307(2):261-9. PubMed ID: 4711192
    [No Abstract]   [Full Text] [Related]  

  • 10. Complex formation of monovalent cations with biofunctional ligands.
    Burgermeister W; Winkler-Oswatitsch R
    Top Curr Chem; 1977; 69():91-204. PubMed ID: 70867
    [No Abstract]   [Full Text] [Related]  

  • 11. Experimentally observed effects of carriers on the electrical properties of bilayer membranes--equilibrium domain. With a contribution on the molecular basis of ion selectivity.
    Szabo G; Eisenman G; Laprade R; Ciani SM; Krasne S
    Membranes; 1973; 2():179-328. PubMed ID: 4585227
    [No Abstract]   [Full Text] [Related]  

  • 12. Charge pulse studies of transport phenomena in bilayer membranes. I. Steady-state measurements of actin- and valinomycin-mediated transport in glycerol monooleate bilayers.
    Feldberg SW; Kissel G
    J Membr Biol; 1975; 20(3-4):269-300. PubMed ID: 1173599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of vasopressin with phosphatidylserine bilayers.
    Bach D; Miller IR
    Biochim Biophys Acta; 1974 Mar; 339(3):367-73. PubMed ID: 4834675
    [No Abstract]   [Full Text] [Related]  

  • 14. Kinetics of macrotetrolide-induced ion transport across lipid bilayer membranes.
    Benz R; Stark G
    Biochim Biophys Acta; 1975 Feb; 382(1):27-40. PubMed ID: 1122321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems.
    Haydon DA; Hladky SB
    Q Rev Biophys; 1972 May; 5(2):187-282. PubMed ID: 4559448
    [No Abstract]   [Full Text] [Related]  

  • 16. Models of ionic currents for excitable membranes.
    Roy G
    Prog Biophys Mol Biol; 1975; 29(1):57-104. PubMed ID: 1094491
    [No Abstract]   [Full Text] [Related]  

  • 17. The mechanism of action of DNP on phospholipid bilayer membranes.
    McLaughlin S
    J Membr Biol; 1972; 9(4):361-72. PubMed ID: 4640973
    [No Abstract]   [Full Text] [Related]  

  • 18. Influence of molecular variations of ionophore and lipid on the selective ion permeability of membranes: I. Tetranactin and the methylation of nonactin-type carriers.
    Krasne S; Eisenman G
    J Membr Biol; 1976 Dec; 30(1):1-44. PubMed ID: 1037004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facilitated transport of di- and trinitrophenolate ions across lipid membranes by valinomycin and nonactin.
    Ginsburg H; Stark G
    Biochim Biophys Acta; 1976 Dec; 455(3):685-700. PubMed ID: 1036715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeability of a modified lipid membrane to 22 Na + .
    Petkau A; Chelack WS
    Biochim Biophys Acta; 1972 Jan; 255(1):161-6. PubMed ID: 5010991
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.