These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 4718439)

  • 21. Cochlear outer-hair-cell efferents and complex-sound-induced hearing loss: protective and opposing effects.
    Rajan R
    J Neurophysiol; 2001 Dec; 86(6):3073-6. PubMed ID: 11731564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Physiology of the centrifugal auditory system].
    Pfalz RK
    Monatsschr Ohrenheilkd Laryngorhinol; 1966 Sep; 100(9):381-99. PubMed ID: 16114432
    [No Abstract]   [Full Text] [Related]  

  • 23. Acoustically evoked activity of single efferent neurons in the guinea pig cochlea.
    Cody AR; Johnstone BM
    J Acoust Soc Am; 1982 Jul; 72(1):280-2. PubMed ID: 7108040
    [No Abstract]   [Full Text] [Related]  

  • 24. Medial-olivocochlear-efferent inhibition of the first peak of auditory-nerve responses: evidence for a new motion within the cochlea.
    Guinan JJ; Lin T; Cheng H
    J Acoust Soc Am; 2005 Oct; 118(4):2421-33. PubMed ID: 16266164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binaural acoustic stimulation exercises protective effects at the cochlea that mimic the effects of electrical stimulation of an auditory efferent pathway.
    Rajan R; Johnstone BM
    Brain Res; 1988 Sep; 459(2):241-55. PubMed ID: 3179705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sound localization: the role of the commissural pathways of the auditory system of the cat.
    Moore CN; Casseday JH; Neff WD
    Brain Res; 1974 Dec; 82(1):13-26. PubMed ID: 4434210
    [No Abstract]   [Full Text] [Related]  

  • 27. Bandwidth dependency of cochlear centrifugal pathways in modulating hearing desensitization caused by loud sound.
    Rajan R
    Neuroscience; 2007 Jul; 147(4):1103-13. PubMed ID: 17600627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Absolute pitch in humans, its variations and possible connections with other known rhythmic phenomena.
    Wynn VT
    Prog Neurobiol; 1973; 1(2):111-49. PubMed ID: 4273117
    [No Abstract]   [Full Text] [Related]  

  • 29. Environmental enrichment to sound activates dopaminergic pathways in the auditory system.
    Niu X; Tahera Y; Canlon B
    Physiol Behav; 2007 Sep; 92(1-2):34-9. PubMed ID: 17631367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Progress in the physiology of hearing at the I. P. Pavlov Institute of Physiology of the USSR Academy of Sciences].
    Al'tman IaA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1975; 25(6):1141-9. PubMed ID: 1210767
    [No Abstract]   [Full Text] [Related]  

  • 31. Cholinergic modulation incorporated with a tone presentation induces frequency-specific threshold decreases in the auditory cortex of the mouse.
    Chen G; Yan J
    Eur J Neurosci; 2007 Mar; 25(6):1793-803. PubMed ID: 17432966
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The noradrenaline-containing innervation of the cochlear nucleus and the detection of signals in noise.
    Pickles JO
    Brain Res; 1976 Apr; 105(3):591-6. PubMed ID: 1260469
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Dependence on electrical stimulation parameters.
    Rajan R
    J Neurophysiol; 1988 Aug; 60(2):549-68. PubMed ID: 3171641
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efferent influences on carotid body chemoreceptors.
    Belmonte C; Eyzaguirre C
    J Neurophysiol; 1974 Nov; 37(6):1131-43. PubMed ID: 4436695
    [No Abstract]   [Full Text] [Related]  

  • 35. Recent advances in information processing within the auditory system.
    Keidel WD
    Rev Laryngol Otol Rhinol (Bord); 1974; 95(7-8):463-74. PubMed ID: 4460141
    [No Abstract]   [Full Text] [Related]  

  • 36. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Medial efferent effects on auditory-nerve responses to tail-frequency tones II: alteration of phase.
    Stankovic KM; Guinan JJ
    J Acoust Soc Am; 2000 Aug; 108(2):664-78. PubMed ID: 10955633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Functional anatomy of the cochlear nerve and the central auditory system].
    Simon E; Perrot X; Mertens P
    Neurochirurgie; 2009 Apr; 55(2):120-6. PubMed ID: 19304300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of olivocochlear bundle section on otoacoustic emissions in humans: efferent effects in comparison with control subjects.
    Williams EA; Brookes GB; Prasher DK
    Acta Otolaryngol; 1994 Mar; 114(2):121-9. PubMed ID: 8203191
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Auditory processing of spectral cues for sound localization in the inferior colliculus.
    Davis KA; Ramachandran R; May BJ
    J Assoc Res Otolaryngol; 2003 Jun; 4(2):148-63. PubMed ID: 12943370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.