These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 4718746)

  • 1. Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport.
    Jacobus WE; Lehninger AL
    J Biol Chem; 1973 Jul; 248(13):4803-10. PubMed ID: 4718746
    [No Abstract]   [Full Text] [Related]  

  • 2. [Comparative studies on the influence of creatine phosphate and creatinine phosphate on respiration and oxidative phosphorylation of isolated heart and liver mitochondria].
    Noack E
    Arzneimittelforschung; 1973 Aug; 23(8):1037-41. PubMed ID: 4801023
    [No Abstract]   [Full Text] [Related]  

  • 3. Compartmentation of mitochondrial creatine phosphokinase. I. Direct demonstration of compartmentation with the use of labeled precursors.
    Erickson-Viitanen S; Viitanen P; Geiger PJ; Yang WC; Bessman SP
    J Biol Chem; 1982 Dec; 257(23):14395-404. PubMed ID: 7142217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An isoenzyme of creatine phosphokinase associated with rabbit heart mitochondria.
    Sobel BE; Shell WE; Klein MS
    J Mol Cell Cardiol; 1972 Aug; 4(4):367-80. PubMed ID: 4403303
    [No Abstract]   [Full Text] [Related]  

  • 5. The structure of mitochondrial ATPase.
    Senior AE
    Biochim Biophys Acta; 1973 Dec; 301(3):249-77. PubMed ID: 4273937
    [No Abstract]   [Full Text] [Related]  

  • 6. On the specificity of the inhibition of adenine nucleotide translocase by long chain acyl-coenzyme A esters.
    Ho CH; Pande SV
    Biochim Biophys Acta; 1974 Oct; 369(1):86-94. PubMed ID: 4278702
    [No Abstract]   [Full Text] [Related]  

  • 7. Studies of energy transport in heart cells. The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation.
    Saks VA; Kupriyanov VV; Elizarova GV; Jacobus WE
    J Biol Chem; 1980 Jan; 255(2):755-63. PubMed ID: 7356643
    [No Abstract]   [Full Text] [Related]  

  • 8. [Functional characterization of the creatine phosphokinase reactions in heart mitochondria and myofibrils].
    Saks VA; Lipina NV; Liulina IV; Chernousova GB; Fetter R; Smirnov VI; Chazov EI
    Biokhimiia; 1976 Aug; 41(8):1460-70. PubMed ID: 1030648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of adenosine and nagarse on palmitoly-CoA synthese in rat heart and liver mitochondria.
    De Jong JW
    Biochim Biophys Acta; 1971 Sep; 245(2):288-98. PubMed ID: 5160740
    [No Abstract]   [Full Text] [Related]  

  • 10. On the triple localization of creatine kinase in heart and skeletal muscle cells of the rat: evidence for the existence of myofibrillar and mitochondrial isoenzymes.
    Scholte HR
    Biochim Biophys Acta; 1973 May; 305(2):413-27. PubMed ID: 4354874
    [No Abstract]   [Full Text] [Related]  

  • 11. Formation of creatine phosphate from creatine and 32P-labelled ATP by isolated rabbit heart mitochondria.
    Yang WC; Geiger PJ; Besman SP
    Biochem Biophys Res Commun; 1977 Jun; 76(3):882-7. PubMed ID: 901451
    [No Abstract]   [Full Text] [Related]  

  • 12. High hydrostatic pressure and enzymic activity: inhibition of multimeric enzymes by dissociation.
    Penniston JT
    Arch Biochem Biophys; 1971 Jan; 142(1):322-32. PubMed ID: 4250973
    [No Abstract]   [Full Text] [Related]  

  • 13. Study of energy transport mechanism in myocardial cells.
    Saks VA; Chernousova GB; Voronkov II; Smirnov VN; Chazov EI
    Circ Res; 1974 Sep; 35 Suppl 3():138-49. PubMed ID: 4415965
    [No Abstract]   [Full Text] [Related]  

  • 14. [Creatine kinase of myocardial mitochondria].
    Dmitrenko NP
    Biokhimiia; 1971; 36(6):1161-7. PubMed ID: 5158727
    [No Abstract]   [Full Text] [Related]  

  • 15. [Phosphorylation of creatine and the membrane potential of heart mitochondria].
    Liberman EA; Khachatrian GI; Tsofina LM; Elizarova GB; Saks VA
    Biokhimiia; 1980 Mar; 45(3):418-23. PubMed ID: 7378482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to weigh and elephant: cytochrome oxidase as a rate-governing step in mitochondrial oxygen consumption.
    Robin ED; Simon LM
    Trans Assoc Am Physicians; 1970; 83():288-300. PubMed ID: 4323593
    [No Abstract]   [Full Text] [Related]  

  • 17. Enzyme localization in beef-heart mitochondria. A biochemical and electron-microscopic study.
    Addink AD; Boer P; Wakabayashi T; Green DE
    Eur J Biochem; 1972 Aug; 29(1):47-59. PubMed ID: 4343300
    [No Abstract]   [Full Text] [Related]  

  • 18. Developmental changes in regulation of mitochondrial respiration by ADP and creatine in rat heart in vivo.
    Tiivel T; Kadaya L; Kuznetsov A; Käämbre T; Peet N; Sikk P; Braun U; Ventura-Clapier R; Saks V; Seppet EK
    Mol Cell Biochem; 2000 May; 208(1-2):119-28. PubMed ID: 10939635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The possible relationship between ultrastructure and biochemical state of heart mitochondria.
    Sordahl LA; Blailock ZR; Kraft GH; Schwartz A
    Arch Biochem Biophys; 1969 Jul; 132(2):404-15. PubMed ID: 4307822
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies of energy transport in heart cells. The functional coupling between mitochondrial creatine phosphokinase and ATP ADP translocase: kinetic evidence.
    Saks VA; Lipina NV; Smirnov VN; Chazov EI
    Arch Biochem Biophys; 1976 Mar; 173(1):34-41. PubMed ID: 1259440
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.