These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 4718937)

  • 21. Liquid paraffins in feed enhance fecal excretion of mirex and DDE from body stores of lactating goats and cows.
    Rozman K; Rozman T; Smith GS
    Bull Environ Contam Toxicol; 1984 Jan; 32(1):27-36. PubMed ID: 6697018
    [No Abstract]   [Full Text] [Related]  

  • 22. Hepatic transcript profiling in early-lactation dairy cows fed rumen-protected niacin during the transition from late pregnancy to lactation.
    Ringseis R; Zeitz JO; Weber A; Koch C; Eder K
    J Dairy Sci; 2019 Jan; 102(1):365-376. PubMed ID: 30487053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of rumen bacteria in dairy cows with varied milk protein yield.
    Xue MY; Sun HZ; Wu XH; Guan LL; Liu JX
    J Dairy Sci; 2019 Jun; 102(6):5031-5041. PubMed ID: 30981485
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liver metabolism and production of cows fed increasing amounts of rumen-protected choline during the periparturient period.
    Piepenbrink MS; Overton TR
    J Dairy Sci; 2003 May; 86(5):1722-33. PubMed ID: 12778583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ethyl-cellulose rumen-protected methionine enhances performance during the periparturient period and early lactation in Holstein dairy cows.
    Batistel F; Arroyo JM; Bellingeri A; Wang L; Saremi B; Parys C; Trevisi E; Cardoso FC; Loor JJ
    J Dairy Sci; 2017 Sep; 100(9):7455-7467. PubMed ID: 28711252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fate of Temik-carbon-14 in lactating cows during a 14-day feeding period.
    Dorough HW; Davis RB; Ivie GW
    J Agric Food Chem; 1970; 18(1):135-42. PubMed ID: 5535666
    [No Abstract]   [Full Text] [Related]  

  • 27. Differences in rumen fermentation characteristics between low-yield and high-yield dairy cows in early lactation.
    Sofyan A; Mitsumori M; Ohmori H; Uyeno Y; Hasunuma T; Akiyama K; Yamamoto H; Yokokawa H; Yamaguchi T; Shinkai T; Hirako M; Kushibiki S
    Anim Sci J; 2017 Jul; 88(7):974-982. PubMed ID: 27878924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of propionate to glucose synthesis in the lactating and nonlactating cow.
    Wiltrout DW; Satter LD
    J Dairy Sci; 1972 Mar; 55(3):307-17. PubMed ID: 5062250
    [No Abstract]   [Full Text] [Related]  

  • 29. Phenobarbital metabolism in the lactating dairy cow.
    Bennink MR; Frobish RA; Davis CL; Clark JH; Brodie BO
    J Dairy Sci; 1973 Dec; 56(12):1564-6. PubMed ID: 4766733
    [No Abstract]   [Full Text] [Related]  

  • 30. Excretion of fenvalerate insecticide in the milk of dairy cows.
    Wszolek PC; Lein DH; Lisk DJ
    Bull Environ Contam Toxicol; 1980 Feb; 24(2):296-8. PubMed ID: 7362910
    [No Abstract]   [Full Text] [Related]  

  • 31. The effect of body condition score at calving and supplementation with Saccharomyces cerevisiae on milk production, metabolic status, and rumen fermentation of dairy cows in early lactation.
    Al Ibrahim RM; Kelly AK; O'Grady L; Gath VP; McCarney C; Mulligan FJ
    J Dairy Sci; 2010 Nov; 93(11):5318-28. PubMed ID: 20965348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of free and protected forms of codliver oil on milk fat secretion in the dairy cow.
    Storry JE; Brumby PE; Hall AJ; Tuckley B
    J Dairy Sci; 1974 Sep; 57(9):1046-9. PubMed ID: 4413135
    [No Abstract]   [Full Text] [Related]  

  • 33. Rumen-protected B vitamin complex supplementation during the transition period and early lactation alters endometrium mRNA expression on day 14 of gestation in lactating dairy cows.
    Kaur M; Hartling I; Burnett TA; Polsky LB; Donnan CR; Leclerc H; Veira D; Cerri RLA
    J Dairy Sci; 2019 Feb; 102(2):1642-1657. PubMed ID: 30580942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows.
    Sun P; Wang JQ; Deng LF
    Animal; 2013 Feb; 7(2):216-22. PubMed ID: 23031615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of ruminal infusion of volatile fatty acids on milk yield and composition and on energy utilization by lactating cows.
    Orskov ER; Flatt WP; Moe PW; Munson AW
    Br J Nutr; 1969 Aug; 23(3):443-53. PubMed ID: 5804408
    [No Abstract]   [Full Text] [Related]  

  • 36. Metabolism of 2-methoxy-4-ethylamino-6-sec-butylamino-s-triazine by the dairy cow and the goat.
    Bakke JE; Robbins JD; Feil VJ
    J Agric Food Chem; 1971; 19(3):462-6. PubMed ID: 5131142
    [No Abstract]   [Full Text] [Related]  

  • 37. The carbinole acaricides: chlorobenzilate and chloropropylate.
    Bartsch E; Eberle D; Ramsteiner K; Tomann A; Spindler M
    Residue Rev; 1971; 39():1-93. PubMed ID: 5127234
    [No Abstract]   [Full Text] [Related]  

  • 38. Metabolic dechlorination of toxaphene in rats.
    Ohsawa T; Knox JR; Khalifa S; Casida JE
    J Agric Food Chem; 1975; 23(1):98-106. PubMed ID: 1133285
    [No Abstract]   [Full Text] [Related]  

  • 39. Metabolic transformations of disugran by rumen fluid of sheep maintained on dissimilar diets.
    Ivie GW; Clark DE; Rushing DD
    J Agric Food Chem; 1974; 22(4):632-4. PubMed ID: 4840914
    [No Abstract]   [Full Text] [Related]  

  • 40. Faba bean (Vicia faba) inclusion in dairy cow diets: Effect on nutrient digestion, rumen fermentation, nitrogen utilization, methane production, and milk performance.
    Cherif C; Hassanat F; Claveau S; Girard J; Gervais R; Benchaar C
    J Dairy Sci; 2018 Oct; 101(10):8916-8928. PubMed ID: 30100504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.