These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4718943)

  • 1. Oxidation of sodium (U- 14 C)palmitate into carbonyl compounds by Penicillium roqueforti spores.
    Dartey CK; Kinsella JE
    J Agric Food Chem; 1973; 21(4):721-6. PubMed ID: 4718943
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolism of (U-14C)lauric acid to methyl ketones by the spores of Penicillium roqueforti.
    Dartey CK; Kinsella JE
    J Agric Food Chem; 1973; 21(6):933-6. PubMed ID: 4755840
    [No Abstract]   [Full Text] [Related]  

  • 3. The oxidation of fatty acids by mycelium of Penicillium roqueforti.
    Lawrence RC; Hawke JC
    J Gen Microbiol; 1968 Apr; 51(2):289-302. PubMed ID: 5652097
    [No Abstract]   [Full Text] [Related]  

  • 4. The oxidation of fatty acids by spores of penicillium roqueforti.
    Lawrence RC
    J Gen Microbiol; 1966 Sep; 44(3):393-405. PubMed ID: 5971387
    [No Abstract]   [Full Text] [Related]  

  • 5. Formation of ketones from fatty acids by spores of Penicillium roqueforti.
    GEHRIG RF; KNIGHT SG
    Nature; 1958 Nov; 182(4644):1237. PubMed ID: 13590289
    [No Abstract]   [Full Text] [Related]  

  • 6. Enzymes of Penicillium roqueforti involved in the biosynthesis of cheese flavor.
    Kinsella JE; Hwang DH
    CRC Crit Rev Food Sci Nutr; 1976 Nov; 8(2):191-228. PubMed ID: 21770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty acid oxidation by spores of Penicillium roqueforti.
    GEHRIG RF; KNIGHT SG
    Appl Microbiol; 1963 Mar; 11(2):166-70. PubMed ID: 13947000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-pressure processing decelerates lipolysis and formation of volatile compounds in ovine milk blue-veined cheese.
    Calzada J; Del Olmo A; Picon A; Gaya P; Nuñez M
    J Dairy Sci; 2013; 96(12):7500-10. PubMed ID: 24140328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metabolism of fatty acids, methyl ketones and secondary alcohols by Penicillium roqueforti in blue cheese slurries.
    King RD; Clegg GH
    J Sci Food Agric; 1979 Feb; 30(2):197-202. PubMed ID: 439870
    [No Abstract]   [Full Text] [Related]  

  • 10. Modelling the effect of temperature, pH, water activity, and organic acids on the germination time of Penicillium camemberti and Penicillium roqueforti conidia.
    Kalai S; Anzala L; Bensoussan M; Dantigny P
    Int J Food Microbiol; 2017 Jan; 240():124-130. PubMed ID: 27090813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in composition of conidia of Penicillium notatum during germination.
    Martin JF; Liras P; Villanueva JR
    Arch Mikrobiol; 1974 Apr; 97(1):39-50. PubMed ID: 4836288
    [No Abstract]   [Full Text] [Related]  

  • 12. Retinol-induced alterations in the lipid metabolism of rat liver: enhanced activity of palmitoyl-CoA synthetase, ketogenesis, oxidation and esterification of (1-14C)palmitate.
    Singh M; Singh VN; Venkitasubramanian TA
    Biochim Biophys Acta; 1970 Oct; 218(1):183-6. PubMed ID: 5473490
    [No Abstract]   [Full Text] [Related]  

  • 13. Homogenization and lipase treatment of milk and resulting methyl ketone generation in blue cheese.
    Cao M; Fonseca LM; Schoenfuss TC; Rankin SA
    J Agric Food Chem; 2014 Jun; 62(25):5726-33. PubMed ID: 24460517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biosynthesis of unsaturated fatty acids by bacilli. 3. Uptake and utilization of exogenous palmitate.
    Fulco AJ
    J Biol Chem; 1972 Jun; 247(11):3503-10. PubMed ID: 4624118
    [No Abstract]   [Full Text] [Related]  

  • 15. Changes in biochemical components during the germination of spores of Penicillium roqueforti.
    Fan TY; Kinsella JE
    J Sci Food Agric; 1976 Aug; 27(8):745-52. PubMed ID: 966728
    [No Abstract]   [Full Text] [Related]  

  • 16. Synchronized sporulation in Penicillium digitatum (Sacc.).
    Zeidler G; Margalith P
    Can J Microbiol; 1972 Nov; 18(11):1685-90. PubMed ID: 5086106
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies on the PR toxin of Penicillium roqueforti.
    Polonelli L; Morace G; delle Monache F; Samson RA
    Mycopathologia; 1978 Dec; 66(1-2):99-104. PubMed ID: 35751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metabolism of triglycerides by spores of Penicillium roqueforti.
    Lawrence RC
    J Gen Microbiol; 1967 Jan; 46(1):65-70. PubMed ID: 6030465
    [No Abstract]   [Full Text] [Related]  

  • 19. The role of polyketides in secondary metabolite production by Penicillia.
    Tanenbaum SW; Nakajima S; Marx G
    Biotechnol Bioeng; 1969 Nov; 11(6):1135-56. PubMed ID: 5365806
    [No Abstract]   [Full Text] [Related]  

  • 20. Conversion of 6-methylsalicylic acid into patulin by Penicillium urticae.
    Forrester PI; Gaucher GM
    Biochemistry; 1972 Mar; 11(6):1102-7. PubMed ID: 5013816
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.