These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 4719138)

  • 1. A new method for measuring glucose translocation through biological membranes and its application to human erythrocyte ghosts.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):412-21. PubMed ID: 4719138
    [No Abstract]   [Full Text] [Related]  

  • 2. Glucose transport in white erythrocyte ghosts and membrane-derived vesicles.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):422-8. PubMed ID: 4719139
    [No Abstract]   [Full Text] [Related]  

  • 3. Reversible association of cytochalasin B with the human erythrocyte membrane. Inhibition of glucose transport and the stoichiometry of cytochalasin binding.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Oct; 323(2):207-19. PubMed ID: 4752283
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of phloretin on monosaccharide transport in erythrocyte ghosts.
    Benes I; Kolínská J; Kotyk A
    J Membr Biol; 1972; 8(3):303-9. PubMed ID: 5084118
    [No Abstract]   [Full Text] [Related]  

  • 5. Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes.
    Krupka RM
    J Membr Biol; 1985; 83(1-2):71-80. PubMed ID: 4039758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of sulfhydryl groups in erythrocyte membrane structure.
    Carter JR
    Biochemistry; 1973 Jan; 12(1):171-6. PubMed ID: 4683480
    [No Abstract]   [Full Text] [Related]  

  • 7. Preferential uptake of D-glucose by isolated human erythrocyte membranes.
    Kahlenberg A; Urman B; Dolansky D
    Biochemistry; 1971 Aug; 10(16):3154-62. PubMed ID: 5126931
    [No Abstract]   [Full Text] [Related]  

  • 8. Isolation of a glucose-binding component from human erythrocyte membranes.
    Bobinski H; Stein WD
    Nature; 1966 Sep; 211(5056):1366-8. PubMed ID: 5969828
    [No Abstract]   [Full Text] [Related]  

  • 9. Cytochalasin B binding sites and glucose transport carrier in human erythrocyte ghosts.
    Jung CY; Rampal AL
    J Biol Chem; 1977 Aug; 252(15):5456-63. PubMed ID: 885863
    [No Abstract]   [Full Text] [Related]  

  • 10. Glucose transport carrier activities in extensively washed human red cell ghosts.
    Jung CY; Carlson LM; Whaley DA
    Biochim Biophys Acta; 1971 Aug; 241(2):613-27. PubMed ID: 5159799
    [No Abstract]   [Full Text] [Related]  

  • 11. On the temperature dependence of initial velocities of glucose transport in the human red blood cell.
    Hankin BL; Stein WD
    Biochim Biophys Acta; 1972 Oct; 288(1):127-36. PubMed ID: 4640380
    [No Abstract]   [Full Text] [Related]  

  • 12. Phloretin keto-enol tautomerism and inhibition of glucose transport in human erythrocytes (including effects of phloretin on anion transport).
    Fuhrmann GF; Dernedde S; Frenking G
    Biochim Biophys Acta; 1992 Sep; 1110(1):105-11. PubMed ID: 1390829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations on the existence of a specific retention of D-glucose by the human erythrocyte membrane.
    Moller JV
    Biochim Biophys Acta; 1971 Oct; 249(1):96-100. PubMed ID: 5141136
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of proteolytic digestion on glucose transport carrier of human erythrocyte ghosts.
    Jung CY; Carlson LM; Balzer CJ
    Biochim Biophys Acta; 1973 Feb; 298(1):108-14. PubMed ID: 4707609
    [No Abstract]   [Full Text] [Related]  

  • 15. Reconstitution and "transport specificity fractionation" of the human erythrocyte glucose transport system. A new approach for identification and isolation of membrane transport proteins.
    Goldin SM; Rhoden V
    J Biol Chem; 1978 Apr; 253(8):2575-83. PubMed ID: 632287
    [No Abstract]   [Full Text] [Related]  

  • 16. Anomalous transport kinetics and the glucose carrier hypothesis.
    Regen DM; Tarpley HL
    Biochim Biophys Acta; 1974 Mar; 339(2):218-33. PubMed ID: 4827852
    [No Abstract]   [Full Text] [Related]  

  • 17. Interaction between phloretin and the red blood cell membrane.
    Jennings ML; Solomon AK
    J Gen Physiol; 1976 Apr; 67(4):381-97. PubMed ID: 5575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental test for cyclic versus linear transport models. The mechanisms of glucose and choline transport in erythrocytes.
    Krupka RM; Devés R
    J Biol Chem; 1981 Jun; 256(11):5410-6. PubMed ID: 7240146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of sugar acetals with the human erythrocyte glucose transport system.
    Novak RA; LeFevre PG
    J Membr Biol; 1974 Jul; 17(3):383-90. PubMed ID: 4847765
    [No Abstract]   [Full Text] [Related]  

  • 20. Chloride transport in human erythrocytes and ghosts: a quantitative comparison.
    Funder J; Wieth JO
    J Physiol; 1976 Nov; 262(3):679-98. PubMed ID: 13204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.